Using Bayesian Analysis to Predict Election Results

February 7, 2023

Contents

1. Introduction1
2. Collecting Real-World Data 1
3. Analyzing the Data 2
4. Building the Model 3
4.1. Probability of probabilities 5
4.2. Understanding the Beta Distribution 5
4.3. Building the Likelihood Function 6
4.4. Building Prior Beliefs 7
4.5. Combining Prior Beliefs and Likelihood 8
4.6. Comparing Probability Distributions 10
4.7. Considering the Number of Votes Left 11
5. Analyzing the Model 15
6. Conclusion 19
7. Biblography 20
Appendices 22
A. Collected Data 22

List of Tables

1. Predictions from first and second model 15
2. Predictions from first, second and third model17
3. Values of S tested with the number of random points used and the average error 18

List of Figures

1. A sample frame from Radio-Canada's presentation of the 2021 federal election 2
2. Distribution of the final total vote counts 2
3. Distribution of the percentages of votes counted 2
4. Plot of the collected data 3
5. A few beta distributions 6
6. Plot of the likelihood function for the leading candidate 7
7. Plot of the probability distribution built from prior knowledge 8
8. The set of distributions D 10
9. The CDFs of the distributions D for all but the leading candidate 10
10. The product of the CDFs of the dis- tributions D for all but the leading candidate 10
11. Probability that the leading candidate at any given share of the votes 10
12. The set of distributions E 12
13. The set of distributions $E_{t c}$ 14
14. Plot of the model from Section 4.7 16
15. Plot of the error in the model for $S=100$ 17
16. Plot of the model for $S=251$ 18
17. Plot of the error in the model for $S=251$ 19

1. Introduction

For as long as I can remember, I have been fascinated by politics, from the power dynamics that have shaped recent history to the magnificent system in which we live, a democracy. Although democracies are not without their flaws, particularly when we consider the current voting system used in Canada, they are arguably the best political system ever created by mankind.

An highly interesting event that results from a democratic election is the night right after where the nation awaits for the final results, slowly receiving updates for the current ballots count for different constituencies. While this is happening, news agencies are trying to use their current data to predict the final results. This process of highly confidently predicting the final results of constantly updating data while trying to make that prediction as soon as possible has long been a source of interrogation for me. Impressively, news agencies are ridiculously fast at forming their predictions, like when Radio-Canada successfully predicted that the Coalition Avenir Québec would form a majority government less than 11 minutes after results started to come in for the Québec 2022 election [15]. Furthermore, although they occasionally make wrong predictions [8], this is exceedingly rare.

In short, I started to wonder about how news agencies could be so fast and so accurate. This paper will be my attempt at building a model to make electoral predictions, so that I can better understand the seemingly magical tools that are used. It is to be noted that my goal here is not to reverse engineer how existing systems work, as I do not have access to the same data that news agencies have. I will instead try to build a simple tool that would allow anyone to simply insert the current ballot counts in their constituency and see the probability that each of the candidates has to win.

The model will based on the "first-past-the-post" election system used in provincial and federal elections in Canada. The Canadian electoral systems generally work in the following way:

1. The territory is divided in smaller districts of
similar size in terms of population called constituencies.
2. During the elections, electors can go cast a vote for their single favorite candidate in their constituency. Each vote will go in a box. Each constituency has multiple boxes of an approximately fixed number of votes.
3. Once all the votes have been gathered, the vote start to be released. This phase can take multiple hours, due to the long process of counting every vote.
4. The results are released box by box.

To verify the accuracy of my model, I will need to compare it to past election data. The data I chose to collect was sampled from Quebecois, Ontarian and Canadian elections (at the provincial or federal level) from the past few years, since those are the elections I have most interacted with, as a Quebecer currently living in Ontario.

Out of all the possible ways to approach such a problem, the one I found the most interesting was to model the situation as a conditional probability problem, as it is a very theorical approach and I was curious to know if it could accurately represent the real world. Other approaches, such as regression or hypothesis testing, would be quite interesting extensions to this paper.

2. Collecting Real-World Data

Before trying to model the situation, we should first gather past data, so that we can test the model with real-world examples while developping it. As we are interested in the partial results (while the ballots are still being counted) of past elections instead of the final results, there is not much publicly available data. Fortunately, Radio-Canada has public archives of all the election nights they streamed on YouTube over the last few years.

This means that we can look at every time a constituency was shown on screen and record the current ballot counts, as well as the number of boxes counted versus the total number of boxes in the constituency.

Figure 1: A sample frame from Radio-Canada's presentation of the 2021 federal election [13]

Then, using public records, we can also note which of the candidates really won in the end. Here are the elections I chose to gather data from:

- Canada (Federal), 2019; Sources: [2], [12]
- Canada (Federal), 2021; Sources: [2], [13]
- Ontario (Provincial), 2022; Sources: [3], [14]
- Quebec (Provincial), 2022; Sources: [4], [15]

At first, I attempted to collect the data by hand, with custom software to assist me in the menial task. However, I realized that this endeavour would know no ends and that I had to find a better solution. This lead me to fully automate the task using a mix of optical character recognition (OCR) and of color recognition. Although the OCR was not always perfect, my code had several failchecks to make sure the collected data was as reliable as possible. Here are a few caveats about the data collection:

- Only the candidates shown by Radio-Canada are counted. To match this, when looking up the end total vote count, only the top five candidates were considered. ${ }^{1}$
- The OCR could only capture the frames where the data was shown in full screen, which means not all data points were captured.

The full dataset is available in Appendix A.

[^0]
3. Analyzing the Data

In the end, the full dataset is 603 rows long and contains data from 228 different constituencies. Here are a few interesting metrics from it vizualized:

Figure 2: Distribution of the final total vote counts
Figure 2 shows how the total number of votes in a constituency at the end of the election is distributed as an histogram. In orange, we can see how many constituencies reside in each bin. The blue curve shows a normal distribution with the mean and standard deviation of the data (mean of $\mu \approx 43476$ and standard deviation of $\sigma \approx 13106$), showing that the end total vote count seems to be somewhat normally distributed. This information may come in helpful to evaluate the model, as we should clear prioritize accuracy for constituencies with approximately 40000 voters.

Figure 3: Distribution of the percentages of votes counted

In Figure 3, we can see how the data points are distributed in terms of the percentage of votes that were counted at the moment they were shown by Radio-Canada. We can notice how the vast majority of the data was captured when not many votes had been counted. Once again, in the spirit of building a model to help election-night watchers predict the probability that a certain candidate will be elected,
this means that we should prioritize the accuracy of our model for low quantities of votes counted.

To compare our statistical model to real-world data, a plot showing the probability of being elected based on the collected data will be quite useful. However, it is impossible to show all the useful dimensions of our data (the vote count for each of the candidates and the percentage of votes counted) in a single plot, as this would require a 7 -dimensional graph (6 for the independent variables and 1 for the dependent variable). Therefore, we need a way to group some of these axes together. The solution I found to this problem is to use the percentage of votes counted and the percentage lead of the leading candidate as axes, as these are arguably the two main intuitive factors when trying to predict if the leading candidate will be elected.

Figure 4: Plot of the collected data
Figure 4 shows exactly this. It was built by first plotting all 603 data points on a plot with the axes described above. These points were then coloured based on wether or not the leading candidate was elected in the end (blue if elected, red if not). The axes where then separated into 6 segments each, creating 36 bins. Finally, the bins were coloured based on the ratio of blue points (situations where the lead won) over the total number of points (total number of situations). For example, if in the upper left bin, there are 28 points, with only one red. This means that out of 28 observed situations with 0% to 10%
of votes counted and 90% to 100% lead, only once did the leading candidate not win. The probability of the leading candidate winning if the situation is in that bin is therefore $\frac{27}{28} \approx 0.9643$, which means the bin will be yellow. The cells that do not contain any points were left white.

This makes this plot a two dimensional histogram of the probability of a lead candidate winning if it lands in a specific bin. So that they can be visually compared, all graphs of this type throughout this exploration will use the same colour scale.

However, we need to keep in mind that the axes used here are not a direct representation of our original data. Our representation taking only the relative difference of the first and second candidate into account, the plot assumes that all the other factors average out. Therefore, it is only reliable when many data points are in bin, which explains why there is some random variation in the colors of the graph. This random variation introduces a source of error when working with our data: the size of the bins (derived from the number of bins) can change the trends we see. The number 36 was chosen here as a tradeoff between having enough bins to observe trends, while having each bin contain quite a few points.

As we can see, for very low percentages of votes counted, there is quite a bit of random variation in the probability of being elected. However, as the percentage of votes and the percentage of lead increases, the probability of the lead being elected increases, just as we would naturally expect. This is represented by the graph being more and more yellow toward the top-right corner.

4. Building the Model

As with any mathematical problem, a considerable portion of building the model is simply to lay down our assumptions and to split the task into multiple, more specific, problems. To approach this using the tools of conditional probability, we first need to understand why predicting election results even involves random events. The fundamental assumption we need
to do here, from which all of the mathematics will follow, is that we can consider each individual casting its vote as an independent random event were the different possibilities are the different candidates in the constituency, with each candidate having a different probability of receiving a vote.

Let's unpack this. Essentially, we can imagine that the probability that a voter will vote for a given candidate is the final proportion of votes that that candidate will have received in the final results. Furthermore, each vote would be independent of the other ones, because election results aren't shown until every polling booth is closed. ${ }^{2}$

Let's start by defining a few variables. Let n be the number of candidates in the constituency.

Let $v=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the set of the current vote counts for the different candidates, ordered from largest to smallest, where v_{1} is the number of votes for candidate $1, v 2$ is the number of votes for candidate 2 , etc. And let $v_{t}=\sum_{i=1}^{n} v_{i}$ be the total number of votes.

Also, let b_{c} be the number of ballot boxes counted and b_{t} be the total number of ballot boxes.

The number of votes left to be counted will also be relevant (if only a few votes are left to be counted, the probability of the lead candidate being elected will be much higher), but it is not a number known in advance. However, we can approximate it by assuming the number of votes per ballot box is roughly constant. Therefore, let $v_{e}=\frac{b_{t}}{b_{c}} v_{t}$ be the expected end total number of votes, and let $v_{l}=v_{e}-v_{t}$ be the expected number of votes left to count.

In general, when discussing a certain candidate, I will refer to it as the k th-candidate. For example, I consider the candidate k to currently have v_{k} votes.

As we are working with conditional probability, our beliefs about the probability each candidate has to win will be most often represented by probability distributions. This idea will be detailed below, notably in Section 4.1.

[^1]Through this paper, our first goal will be to represent the likelihood of observing the evidence we have (the current number of votes) as a function (Section 4.3) and to represent our prior beliefs (what we thought before observing any data about the chances that each candidate has to win) as a probability distribution (Section 4.4). We will then be able to combine those two pieces of information through the use of Baye's theorem, which will give us a probability distribution representing the probability that a certain candidate will have a certain share of the final votes, assuming the election contains infinitely many votes (Section 4.5). Finally, using this and the number of votes left to be counted, we will be able to generate a probability distribution representing the expected final number of votes for a given candidate (Section 4.7). This will give us all the information we need to compute the probability that each of the candidates has to win over the others.

Therefore, we will have $D=\left\{D_{1}, D_{2}, D_{3}, \ldots, D_{n}\right\}$ be the list of the unknown probability distributions representing the probability that a certain candidate will have a certain share of the votes, where D_{1} is the probability distribution for the candidate $1, D_{2}$ for the candidate 2 , etc.

Finally, $E=\left\{E_{1}, E_{2}, E_{3}, \ldots, E_{n}\right\}$ will represent the list of probability distributions for the final expected number of votes, where E_{1} is the distribution for the candidate $1, E_{2}$ for the candidate 2 , etc.

Although the sets D and E may look quite cryptic for now, their meaning and utility will become much clearer through the rest of this paper.

Due to the usefulness of specific, visual examples when trying to investigate probability questions, let's use the following variables as a simple and concrete example:

$$
\begin{aligned}
n & =5 \\
v & =\{60,50,36,34,20\} \\
v_{t} & =60+50+36+34+20=200 \\
b_{c} & =10 \\
b_{t} & =16
\end{aligned}
$$

$$
\begin{aligned}
& v_{e}=\frac{16}{10}(200)=320 \\
& v_{l}=320-200=120
\end{aligned}
$$

This means that we will be looking at a 5 candidates election (n), where the the leading candidate currently has 60 votes $\left(v_{1}\right)$. Out of the 16 boxes in the constituency $\left(b_{t}\right), 10$ have been opened $\left(b_{c}\right)$, which allows us to predict that there will be around 320 votes in the end $\left(v_{e}\right)$, based on the 200 we currently have $\left(v_{t}\right)$.

Although this set of data will be used for numerical and graphical example, this paper will not focus on the computation of specific numerical examples, as the endgoal is to have a generalized computer model. Furthermore, due to their nature, many of the computations discussed here have no analytical solutions, which is why computer based approximations will be favoured.

4.1. Probability of probabilities

A reccurant theme in this paper will be the idea of probability of probabilities. Although this may seem like an utterly nonsensical statement at first, it is actually at the root of many advanced concepts in conditional probability. In order to explore this idea, let's use an example situation.

Considering a biased coin whose mathematical weight (bias) is unknown, after observing 90 heads and 10 tails out of 100 trials, what should we expect the bias to be?

One might argue that the answer is trivial: to find the weight, we divide the number of observed heads (or tails) by the number of throws. This goes with the idea of the Law of large numbers [26] that the more trials we observe, the more the observed frequency will approach the theorical (the real) probability.

However, I would argue that this reasoning is flawed. Yes, $\frac{90}{100}=0.9$ is the most likely probability, but it is possible that the true probability is $0.1,0.99$ or any other value between 0 and 1 , exclusively. An event being unlikely does not mean it is impossible.

The better approach is therefore to use probability distributions: instead of trying to define the weight
of the coin with a single number, we can define a probability distribution that represents how likely each of the infinitely many possible values of the bias are. That probability distribution would most likely be a beta distribution, which we will explore below.

4.2. Understanding the Beta Distribution

As we will heavily rely on it, it is important that we understand the beta distribution. Two reasons make it ideal for representing probability of probabilities: its domain is $[0,1]$ and the area under a beta distribution's Probability Density Function (PDF) over its range is 1 . This means that any value on the x-axis represents a possible probability and that the y-value of the distribution at that point represents the probability density that that probability is the true one.

Furthermore, the beta distribution can take a variety of shapes, as its PDF is, most commonly, defined in terms of two shape parameters, α and β, both being positive non-null real numbers. It's definition is based on the beta function, here called \mathcal{B} [21]. Let's define a distribution X such that $X \sim \operatorname{Be}(\alpha, \beta)$, where Be is the beta distribution.

$$
P(X=x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathcal{B}(\alpha, \beta)}, x \in[0,1]
$$

In the definition of the PDF of the beta distribution, \mathcal{B} is the beta function. Dividing by the beta function has the effect of scaling the numerator in order to make the area under the beta distribution's PDF equal to 1 . It is therefore equal to the integral of the numerator.

$$
\mathcal{B}=\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} \mathrm{~d} x
$$

However, it is more commonly defined as follows, where Γ is the gamma function [22]:

$$
\mathcal{B}(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

This distribution would have a mean of [21]:

$$
E(X)=\mu_{X}=\frac{\alpha}{\alpha+\beta}
$$

Finally, the gamma function can be viewed as an expansion of the factorials to the Reals (except for integers smaller or equal to 0) while respecting the following identity [24], n being a positive integer, (a more detailed explanation of the gamma function has been deemed outside of the scope of this investigation):

$$
\Gamma(n)=(n-1)!
$$

The beta distribution will be refered to as $\operatorname{Be}(\alpha, \beta)$ throughout this paper. Here are a few beta distributions plotted, demonstrating some of the various shapes it can take:

Figure 5: A few beta distributions

In Figure 5, we can see multiple interesting things, notably that a $\operatorname{Be}(1,1)$ distribution is equivalent to a Uniform $(0,1)$ distribution $[28]^{3}$ and that the beta distribution can be both symmetric and highly asymmetric about the average.

Finally, the Cumulative Distribution Function [18] (CDF) of a beta distribution is the regularized beta function [27], notated $\mathcal{I}(z ; a, b)$, which is in itself expressed in terms of the incomplete beta function [25], notated $\mathcal{B}(z ; a, b) .{ }^{4}$

$$
P(A \leq z)=\mathcal{I}(z ; \alpha, \beta)=\frac{\mathcal{B}(z ; \alpha, \beta)}{\mathcal{B}(\alpha, \beta)}
$$

Now that we understand the beta distribution, we can go back to building the model.

[^2]
4.3. Building the Likelihood Function

The first step is to figure out the probability distribution representing the share of votes each candidate has.

Seeing this from the persepective of each of the candidates, we can consider the number of votes received over the total number of votes as a binomial experiment, where a success is defined as a vote for that candidate and a failure as a vote given to any other. As a reminder, the Probability Mass Function [11] (PMF), the discrete analogue of the PDF [11], for a binomial distribution $Y, Y \sim \mathrm{~B}(m, p)^{5}$, would be the following, where p is the probability of the event happening and m is the total number of trials:

$$
P(Y=x)=\binom{m}{x} p^{x}(1-p)^{m-x}, x \in\{0,1,2, \ldots, m\}
$$

In our case, we know both the number of successful trials, v_{k}, (the current number of votes for the candidate) and the total number of trials, v_{t}, (the current total number of votes). This means that, for the candidate k, with number of votes v_{k}, the unknown left is the probability, here p, of receiving a vote distributed from the unknown distribution D_{k}, D_{k} being the distribution representing the probability that the candidate will receive the next vote. We can therefore rewrite the above equation by building a binomial distribution $V_{k} \sim \mathrm{~B}\left(v_{t}, p\right)$.

$$
P\left(V_{k}=v_{k} \mid D_{k}=p\right)=\binom{v_{t}}{v_{k}} p^{v_{k}}(1-p)^{v_{t}-v_{k}}
$$

However, as the distribution V_{k} is not really important, we could also represent the above as follows,

$$
P\left(v_{k} \mid D_{k}=p\right)=\binom{v_{t}}{v_{k}} p^{v_{k}}(1-p)^{v_{t}-v_{k}}
$$

meaning: What is the probability of observing the evidence v_{k} given that $D_{k}=p$?

As what really interests us is the unknown distribution D_{k}, we can rewrite this as its likelihood function [20], $L_{D_{k}}(p)$, which will answer the question: Based solely on the evidence, how likely is it that a

[^3]certain value of the probability p is the true probability that lead to the observed events?
\[

$$
\begin{aligned}
L_{D_{k}}(p) & =P\left(v_{k} \mid D_{k}=p\right) \\
& =\binom{v_{t}}{v_{k}} p^{v_{k}}(1-p)^{v_{t}-v_{k}}
\end{aligned}
$$
\]

Here is the plot of this function for the leading candidate $(k=1)$ in our example, considering it currently has $v_{k}=v_{1}=60$ and that the total number of votes is $v_{t}=200$:

Figure 6: Plot of the likelihood function for the leading candidate

Referring back to Section 4.1, this is an example of a probability distribution representing an unknown probability. We should however still expect the mode of our distribution, its maximum, to be the simple frequency calculation $\frac{v_{1}}{v_{t}}=\frac{60}{200}=0.3$, which we can verify in Figure 6.

However, we are still missing a key element before being able to say that this function represents the probability distribution of the share of the votes a given candidate has, as we still need to consider our prior beliefs [20].

4.4. Building Prior Beliefs

Our prior beliefs, as the name implies, is what we believe the probability distribution to be before seeing the evidence (the partial election results, in our context). We express it in the form of a probability distribution. In our context, there are two ways we can approach this: prior ignorance and substantial prior knowledge [7]. This process of quantifying our prior beliefs is often referred to as prior elicitation [6].

Prior ignorance is really quite easy: we assume we know nothing before the election. Therefore, we
need a distribution illustrating that we consider all probabilities to be equally likely. This is the perfect use for the uniform distribution, so we would say that our prior beliefs about the probability distribution of the share of the votes of a given candidate $\left(D_{k}\right)$ follows a Uniform $(0,1)$ distribution (also known as a $\mathrm{Be}(1,1)$ distribution).

Substantial prior knowledge is quite a bit less trivial. First, let's define exactly what it means. Commonly, we will say we have substantial prior knowledge "[when] expert opinion, for example, gives us good reason to believe that some values in a permissable range for $[p]$ are more likely to occur than others." [6] In our case, expert opinions could be the polls from firms like LÉGER, who usually publish there results a few weeks before any major election. An example of such a report could be LÉGER's ÉLECTIONS PROVINCIALES : Montréal et Laval [9], which contains two key pieces of information:

- The voting intentions (what percentage of people plan to vote for each of the parties).
- The firmness of the intentions (for each party what percentage of people don't expect to change their minds).

For example, suppose we knew from a report that 35% of the citizens intended to vote for a given party, and that 45% of those people are quite firm about their decision, how could we transform this into a probability distribution? For the reasons outlined in Section 4.2, it seems reasonable to try building a beta distribution. Let's therefore define our prior beliefs distribution as $U \sim \operatorname{Be}(\alpha, \beta)$.

First, we know that our expected value (the mean of the distribution) should be 35% (0.35). Then we could define "quite firm" as being at $\pm 5 \%$ of the mean. The probability of landing in that range must therefore be equal to 45% (0.45). This is equivalent to stating that the area under the PDF of our distribution in the range $[0.30,0.40]$ should be equal to 0.45 . Let's write a system of equation using both of these facts:

$$
\begin{aligned}
0.35 & =E(U) \\
& =\mu_{U}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{\alpha}{\alpha+\beta} \\
\text { And } \\
0.45=\int_{0.30}^{0.40} P(U=x) \mathrm{d} x \\
=\int_{0.30}^{0.40} \frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathcal{B}(\alpha, \beta)} \mathrm{d} x
\end{gathered}
$$

We should also keep in mind that both α and β need to be positive to satisfy the requirements of the beta function. As there is no trivial analytical solution to this system of equations, the most efficient solution is to resort to numerical approximation to solve for α and β. It is to be noted that this system of equations may not always yield a solution when considering extreme requirements, like having a exceedingly small margin arround the mean for the definition of "quite firm". This, however, is not really an issue as these cases would lead to such certain prior beliefs that any evidence would hardly be relevant.

Using Wolfram Mathematica [30] or similar software, we can find that this system is solved by $\alpha \approx 11.485$ and $\beta \approx 21.330$. This gives us the folowing probability distribution as our prior beliefs:

Figure 7: Plot of the probability distribution built from prior knowledge

It is important to keep in mind that this process is quite subjective. In fact, we chose to define "quite firm" as being $\pm 5 \%$ of the mean, but we could have chosen $\pm 7 \%, \pm 3 \%$ or any other value. This is the main weakness of this process: our biases can easily sneak into our statistics if we are not careful.

As our prior beliefs can be represented as a beta distribution no matter if we have prior ignorance or prior substantial knowledge, it makes sense to define our prior beliefs for the candidate k as $D_{k} \sim \operatorname{Be}\left(a_{k}, b_{k}\right)$
before seeing any of the evidence. For the rest of this investigation, all of our prior knowledge about the candidate k will be referred to with the variables a_{k} and b_{k} shaping this distribution. We can now write our prior beliefs as follows:

$$
P\left(D_{k}=p\right)=\frac{p^{a_{k}-1}(1-p)^{b_{k}-1}}{\mathcal{B}\left(a_{k}, b_{k}\right)}
$$

4.5. Combining Prior Beliefs and Likelihood

Now that we know how to form our prior beliefs and our likelihood function, it is time to combine them into the probability distribution for the share of votes of a candidate.

This is where Bayes' theorem comes in. In fact, this theorem gives a systematic method to mix prior beliefs and observed evidence (summarized into the likelihood function) into posterior beliefs. ${ }^{6}$ As a reminder, here is the formula for said theorem [19], where A and B are independent random events:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

However, I dislike this depiction of Bayes' theorem as it abstracts and hides its true beauty. Exploring each of the terms leads us to the following:
$\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})$ This represents our posterior beliefs about A, considering that B happened.
$\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A})$ This represents the likelihood that A happens given the observed evidence for B.
$\boldsymbol{P}(\boldsymbol{A})$ This represents our prior beliefs about A.
$\boldsymbol{P}(\boldsymbol{B})$ This represents the total probability of B. Essentially, this has the effect of scaling the probability of $A \mid B$ such that it lands between 0 and 1. In the case of probability distributions, this ensures that the area under the distribution's curve equals 1 [5].
It is also interesting to note that $P(B \mid A)$ and $P(A)$ can not only be probabilities, but also probability distributions, making $P(A \mid B)$ into one too.

As $P(B)$ is simply a scaling constant, we can rewrite

[^4]this formula as
$$
P(A \mid B) \propto P(B \mid A) P(A)
$$

However, I believe that the following is a much more elegant way to describe Bayes' theorem [5]:

$$
\text { posterior } \propto \text { likelihood } \times \text { prior }
$$

The beauty of this lies in how clearly it highlights how evidence (likelihood) doesn't replace our prior beliefs, but rather updates them to form our posterior beliefs [16].

But how could we apply this to our variables? Let's rewrite this in terms of our variables and explore each of the terms, keeping in mind $p \in[0,1]$:

$$
P\left(D_{k}=p \mid v_{k}\right) \propto P\left(v_{k} \mid D_{k}=p\right) P\left(D_{k}=p\right)
$$

$\boldsymbol{P}\left(\boldsymbol{D}_{\boldsymbol{k}}=\boldsymbol{p} \mid \boldsymbol{v}_{\boldsymbol{k}}\right)$ This is the probability distribution D_{k} (as a function of p) we are searching for.
$\boldsymbol{P}\left(\boldsymbol{v}_{\boldsymbol{k}} \mid \boldsymbol{D}_{\boldsymbol{k}}=\boldsymbol{p}\right)$ This is the likelihood function we derived earlier, $L_{D_{k}}(p)$.
$\boldsymbol{P}\left(\boldsymbol{D}_{\boldsymbol{k}}=\boldsymbol{p}\right)$ This is the prior beliefs distribution we derived earlier.
As we can see, all of our work is really coming in together. Let's substitute the terms with our findings from the previous subsections.

$$
\begin{aligned}
& P\left(D_{k}=p \mid v_{k}\right) \propto P\left(v_{k} \mid D_{k}=p\right) P\left(D_{k}=p\right) \\
& \propto\left(\binom{v_{t}}{v_{k}} p^{v_{k}}(1-p)^{v_{t}-v_{k}}\right) \\
&\left(\frac{p^{a-1}(1-p)^{b-1}}{\mathcal{B}(a, b)}\right) \\
& \propto\left(p^{v_{k}}(1-p)^{v_{t}-v_{k}}\right)\left(p^{a-1}(1-p)^{b-1}\right) \\
& \propto p^{v_{k}+a-1}(1-p)^{v_{t}-v_{k}+b-1}
\end{aligned}
$$

There are three things to notice and recall here: (I) As this distribution represents possible values of a probability p, it's domain is $[0,1]$. (II) As with any other continuous probability distribution, its area over its range (here, $[0,1]$) must be equal to 1 . (III) The beta distribution matches both the form of the equation we obtained and the above two criterias.

Finding the beta distribution corresponding to our above equation is simply a question of identifying
the values of the unknown parameters. In a beta distribution $\mathrm{Be}(\alpha, \beta)$ whose PDF is expressed as a function of x, x is raised to the power of $\alpha-1$ and $1-x$ is raised to the power of $\beta-1$. Applying this to our example, where the distribution is expressed in function of p, we get the following coefficients and, therefore, the following distribution:

$$
\begin{gathered}
\alpha-1=v_{k}+a_{k}-1 \\
\alpha=v_{k}+a_{k} \\
\text { And } \\
\beta-1=v_{t}-v_{k}+b_{k}-1 \\
\beta=v_{t}-v_{k}+b_{k}
\end{gathered}
$$

Therefore

$$
D_{k} \mid v_{k} \sim \operatorname{Be}\left(v_{k}+a_{k}, v_{t}-v_{k}+b_{k}\right)
$$

Sadly, as detailed polls for elections dating back multiple years are not trivial to find, we will have to assume prior ignorance for the evaluation part of this investigation. Remembering that prior ignorance can be represented as a $\operatorname{Be}(1,1)$ distribution, we know that both a_{k} and b_{k} would be equal to 1 in this scenario. The following expression therefore represents our posterior beliefs when we lack substantial prior knowledge.

$$
D_{k} \mid v_{k} \sim \operatorname{Be}\left(v_{k}+1, v_{t}-v_{k}+1\right)
$$

The process of deriving prior beliefs, observing evidence to build a likelihood function and combining those two elements together is commonly referred to as bayesian analysis [20], hence the name of this paper.

As a reminder, D_{k} is the distribution representing the probability that the candidate k will receive the next vote, which is equivalent to the share of votes it would get if the election was to run infinitely.

For the sake of visual understanding, let's visualize our findings for each of the candidates in our example.

It is interesting to note that both our prior and posterior beliefs are beta distribution when the likeli-

Figure 8: The set of distributions D
hood function comes from a binomial distribution. In bayesian analysis terminology, we would describe this by saying that the beta distribution is a conjugate prior for the binomial distribution [10].

4.6. Comparing Probability Distributions

In Figure 8, we can see that, just as we would expect, the more votes a candidate currently has, the more likely it is to have a larger share of the votes. For example, the candidate with the most votes, candidate 1 , is associated with the rightmost distribution, while the candidate with the least votes, candidate 5 , is associated with the leftmost distribution.

However, we still don't have the concrete probability that each candidate has to win. For now, let's assume that elections are infinite and that winning means having the greatest share of votes in the long run. ${ }^{7}$ This would mean that a candidate's probability to win is the probability that its probability distribution from the D is "bigger" than all the other candidates' distributions. But what exactly does "bigger" mean here? And how could we quantify it? For the following steps, visual examples will be crucial. Let's use the leading candidate as our example.

First, let's consider the probability that some candidate k will have less than a certain share r of the votes, $P\left(D_{k} \leq r\right)^{8}$. Plotting this for all candidates except the leading one gives us Figure 9.

As all of our distributions come from independent events, we can find the probability that all these four distributions will be smaller than r by simply multiplying them together. Plotting this leads to Figure 10.

[^5]

Figure 9: The CDFs of the distributions D for all but the leading candidate

Figure 10: The product of the CDFs of the distributions D for all but the leading candidate

From the distribution of the leading candidate, D_{1}, we know the probability that it will have some share r of the votes. Therefore, keeping in mind we are working with independent events, we can find the probability that all other candidates will have a share smaller than r (what we see in Figure 10) and that the leading candidate will have that share of the votes (D_{1} 's PDF evaluated at r) by simply multiply them together.

Figure 11: Probability that the leading candidate at any given share of the votes

Finally, we can get the total probability that the leading candidate will have a bigger share of votes than all the other candidates by calculating the area under the above curve over the course of its domain.

This would yield that the leading candidate has a probability of approximately 0.86658 of winning. Doing the calculations for all the candidates gives us approximately the following results: (1) 0.86658 (2) 0.13183 (3) 0.00012 (4) 0.00004 (5) 0.00000.

A simple verification we can do to ensure our mathematical reasoning was not blatantly wrong is simply to add the above numbers and verify they add up to 1 , as we know that a candidate will be elected (the probability of any candidate being elected is the sum of the probability of each candidate to be elected), which they do. ${ }^{9}$ In other words, the probability that a candidate will win is mutually exclusive and complementary to the probability that any of the other candidates will.

An important question left unanswered is why was the area under the curve not 1 . Of course, we know intuitively that this couldn't be the case, but all other continous probability distributions encountered in this paper had an area of 1 , leading to the question: What is different here? What they all had in common is that they considered how an even that we know will happen would happen. However, here, the candidate is not certain to win, which is why the total probability of it winning, the area under the curve, is less than one.

Let's summarize the steps we did in a more general form, assuming we are searching for the probability that a candidate k will win. First, we multiplied the probability that all other candidates would have a share smaller than r of the votes.

$$
\prod_{\substack{i=1 \\ i \neq k}}^{n} P\left(D_{i} \leq r\right)
$$

Then, we multiplied that expression by the probability that the candidate k would have that share r of the votes.

$$
P\left(D_{k}=r\right) \prod_{\substack{i=1 \\ i \neq k}}^{n} P\left(D_{i} \leq r\right)
$$

[^6]Finally, we took the area under the curve.

$$
\int_{-\infty}^{\infty} P\left(D_{k}=r\right) \prod_{\substack{i=1 \\ i \neq k}}^{n} P\left(D_{i} \leq r\right) \mathrm{d} r
$$

However, since D_{k} is a beta distribution, $P\left(D_{k}=r\right)$ is 0 for all values outside of the interval $[0,1]$ and we can therefore limit the bounds of the integral.

$$
\int_{0}^{1} P\left(D_{k}=r\right) \prod_{\substack{i=1 \\ i \neq k}}^{n} P\left(D_{i} \leq r\right) \mathrm{d} r
$$

More generally, the following is the formula for calculating the probability that a certain probability distribution X_{k} will have a greater value than all other distributions in the set X, containing n elements, considering the PDF of the distribution X_{k} has nonzero values only in the interval $[a, b]$. This expression is largely inspired from What is $P\left(X_{1}>X_{2}, X_{1}>\right.$ $\left.X_{3}, \ldots, X_{1}>X_{n}\right)$? $[29]^{10}$.

$$
P\left(\bigcap_{i=1}^{n} X_{k} \geq X_{i}\right)=\int_{a}^{b} P\left(X_{k}=x\right) \prod_{\substack{j=1 \\ j \neq k}}^{n} P\left(X_{j} \leq x\right) \mathrm{d} x
$$

It is to be noted that there is no analytical solution to the above equations for sets of distributions that contain more than two elements [29]. Therefore, numerical integration will be needed in order to find the probability that a certain candidate will win.

4.7. Considering the Number of Votes Left

Up to here, we assumed some sort of infinite election where a candidate won if the distribution of his share of the votes in the long run was bigger than the one of all the other candidates. However, in a real world election, there is a fix number of votes. But how could we take this into account?

What we first need to know is the probability that a certain candidate will gain a certain number of votes over the number of votes left, v_{l}. As we may notice,

[^7]this looks quite a bit like a binomial experiment: (I) we have a fix number of trials (the number of votes left) (iI) we have only two possible states for each trial (success being the candidate gaining a vote and failure being another candidate gaining it) (III) each trial has the same probability of having a specific outcome.

The only problem is that we do not have a probability of gaining a vote, but rather a probability distribution, $D_{k} \mid v_{k}$ (for the candidate k). Although this may seem like an issue, it actually isn't. What we need to do is to combine the binomial distribution described above to our probability distribution $D_{k} \mid v_{k}$ into a combined predictive distribution. In our case, because we have a beta distribution and a binomial distribution, the distribution we will obtain will be a beta-binomial distribution [17], notated here $\operatorname{Beta} \operatorname{Bin}(\alpha, \beta, m)$, where α and β are the parameters of the underlying beta distribution and m is the number of trial ${ }^{11}$.

The following demonstration of the combination of both distributions is a more detailed version of the one included in Bayesian Statistics, Simulation and Software - The Beta-Binomial Distribution [1]. The first step is to find the simultaneous distribution of the beta and binomial distributions. This means weighing the binomial distribution, $X \sim \mathrm{~B}(m, p)$, as a function of the probability p, by the probability that the beta distribution, $Y \sim \operatorname{Be}(\alpha, \beta)$, will equal p. This process is extremely similar to what we did when trying to form our posterior beliefs from a binomial likelihood and a beta prior.

$$
\begin{aligned}
P(X=x \mid Y=p)= & P(X=x) P(Y=p) \\
= & \left(\binom{n}{x} p^{x}(1-p)^{n-x}\right) \\
& \left(\frac{p^{\alpha-1}(1-p)^{\beta-1}}{\mathcal{B}(\alpha, \beta)}\right) \\
= & \frac{\binom{n}{x}}{\mathcal{B}(\alpha, \beta)} p^{x+\alpha-1}(1-p)^{n-x+\beta-1}
\end{aligned}
$$

Then, we can find the predictive distribution, what we are actually searching for, by integrating the above

[^8]over the range of $p,[0,1]$.
\[

$$
\begin{aligned}
P(X=x) & =\int_{0}^{1} \frac{\binom{n}{x}}{\mathcal{B}(\alpha, \beta)} p^{x+\alpha-1}(1-p)^{n-x+\beta-1} \mathrm{~d} p \\
& =\frac{\binom{n}{x}}{\mathcal{B}(\alpha, \beta)} \int_{0}^{1} p^{x+\alpha-1}(1-p)^{n-x+\beta-1} \mathrm{~d} p
\end{aligned}
$$
\]

We may recognize from Section 4.2 that the integral we are left with is the denominator of the PDF of a beta distribution $\operatorname{Be}(x+\alpha, n-x+\beta)$, which can be expressed in terms of the beta function, as follows:

$$
\begin{aligned}
P(X=x) & =\frac{\binom{n}{x}}{\mathcal{B}(\alpha, \beta)} \int_{0}^{1} p^{x+\alpha-1}(1-p)^{n-x+\beta-1} \mathrm{~d} p \\
& =\frac{\binom{n}{x}}{\mathcal{B}(\alpha, \beta)} \mathcal{B}(x+\alpha, n-x+\beta) \\
& =\binom{n}{x} \frac{\mathcal{B}(x+\alpha, n-x+\beta)}{\mathcal{B}(\alpha, \beta)}
\end{aligned}
$$

Considering this, we can now find an expression for the probability that the candidate k will receive a certain number of votes over the rest of the counting process, using v_{l} as the number of trials and the parameters from $D_{k} \mid v_{k}$, the probability for the k thcandidate to receive the next vote, for the underlying beta distribution.

$$
E_{k} \mid v_{k} \sim \operatorname{BetaBin}\left(v_{k}+a_{k}, v_{t}-v_{k}+b_{k}, v_{l}\right)
$$

Plotting this distribution for each of the candidates gives us Figure 12.

Figure 12: The set of distributions E
Carrying forward, I will notate the PDF of the distribution $E_{k} \mid v_{k}$ using functional notation to facilitate the representation of the operations we need to do on it. Therefore, we currently have the following:

$$
\begin{aligned}
E_{k}(x) & =\binom{v_{l}}{x} \frac{\mathcal{B}\left(x+v_{k}+a_{k}, v_{l}-x+v_{t}-v_{k}+b_{k}\right)}{\mathcal{B}\left(v_{k}+a_{k}, v_{t}-v_{k}+b_{k}\right)} \\
& =\binom{v_{l}}{x} \frac{\mathcal{B}\left(x+v_{k}+a_{k}, v_{e}-x-v_{k}+b_{k}\right)}{\mathcal{B}\left(v_{k}+a_{k}, v_{t}-v_{k}+b_{k}\right)}
\end{aligned}
$$

Comparing these probability distributions, however, would not be the full story. In fact, we not only want to take into account the number of votes each candidate is expected to get, but also the current number of votes of each candidate. This can be done by translating the above function to the right by the candidate's current number of votes, v_{k}. The set of the translated distributions will be referred to as E_{t} and the distribution of the candidate k as $E_{t k}$.

$$
\begin{aligned}
E_{t k}(x) & =E_{k}\left(x-v_{k}\right) \\
& =\binom{v_{l}}{\left(x-v_{k}\right)} \frac{\binom{\mathcal{B}\left(\left(x-v_{k}\right)+v_{k}+a_{k},\right.}{\left.v_{e}-\left(x-v_{k}\right)-v_{k}+b_{k}\right)}}{\mathcal{B}\left(v_{k}+a_{k}, v_{t}-v_{k}+b_{k}\right)} \\
& =\binom{v_{l}}{x-v_{k}} \frac{\mathcal{B}\left(x+a_{k}, v_{e}-x+b_{k}\right)}{\mathcal{B}\left(v_{k}+a_{k}, v_{t}-v_{k}+b_{k}\right)}
\end{aligned}
$$

An important fact to keep in mind is that E_{k}, and therefore $E_{t k}$, are discrete probability distributions. The problem with this is that discrete probability distribution are much harder to compute than continous ones. This is because modern computational mathematics engine, like Wolfram Mathematica [30] have many more tricks to optimize integrals (used in continuous distributions) than sums (used in discrete distributions). Furthermore, the formula derived in Section 4.6 to compare probability distributions is only built for continous distributions, which would mean we couldn't use it to compare our distributions for the expected final number of votes.

The good news is that the beta-binomial distribution, $\operatorname{BetaBin}(\alpha, \beta, n)$, can be computed for noninteger values, as all the functions and operations it depends on also are.

First, the choose function has a continuous expansion, which can be expressed as follows [23].

$$
\binom{x}{y}= \begin{cases}0 & y<0 \\ \frac{\Gamma(x+1)}{\Gamma(y+1) \Gamma(x-y+1)} & 0 \leq y \leq x \\ 0 & x<y\end{cases}
$$

Although it is common not to set restrictions on this expression, I believe they keep the function closer to its original meaning, which is useful in our context, as we still want the idea that it is impossible (value of 0)
to have less than 0 votes or more than the maximum.
Second, the beta function is perfectly well defined for both integer and non-integer values, except for nonpositive integers. However, when examining each of the parameters of the beta functions in our expression, we can realize that they will never be nonpositive as long as the number of votes we are considering is between the current number of votes, v_{k}, and the maximum number of votes the candidate could get, $v_{k}+v_{l}$, keeping in mind that a_{k} and b_{k} will always be greater than 0 , due to restrictions on the parameters of the beta function.
$\boldsymbol{x}+\boldsymbol{a}_{\boldsymbol{k}} \leq \mathbf{0}$ This implies that $x \leq-a_{k}$, but it makes no sense to consider the probability that a certain candidate will lose votes.
$\boldsymbol{v}_{\boldsymbol{e}}-\boldsymbol{x}+\boldsymbol{b}_{\boldsymbol{k}} \leq \mathbf{0}$ This implies that $x \geq v_{e}+b_{k}$. However, it doesn't make sense to consider the probability that a candidate will have more votes than are expected in the end for all canidates.
$\boldsymbol{v}_{\boldsymbol{k}}+\boldsymbol{a}_{\boldsymbol{k}} \leq \mathbf{0}$ This implies that $v_{k} \leq-a_{k}$, but a candidate will always have a non-negative vote count. $\boldsymbol{v}_{\boldsymbol{t}}-\boldsymbol{v}_{\boldsymbol{k}}+\boldsymbol{b}_{\boldsymbol{k}} \leq \mathbf{0}$ This implies that $v_{k} \geq v_{t}+b_{k}$, but it is not possible for a candidate to have more votes than the total amount.

For impossible number of votes, the most logical thing is to define our function as having a value of 0 , to indicate the impossibility of such an event happening.

The continous version of $E_{t k}$ and the continous version of the set E_{t} will be respectively denoted $E_{t c k}$ and $E_{t c}$. Using this, we currently have the following expression.
$E_{t c k}(x)= \begin{cases}0 & x<v_{k} \\ \binom{v_{l}}{x-v_{k}} \frac{\mathcal{B}\left(x+a_{k}, v_{e}-x+b_{k}\right)}{\mathcal{B}\left(v_{k}+a_{k}, v_{t}-v_{k}+b_{k}\right)} & v_{k} \leq x \leq v_{k}+v_{l} \\ 0 & v_{k}+v_{l}<x\end{cases}$
All of this, however, introduces the strange idea of our candidates having non-integer vote counts. The important thing to realize is that this doesn't affect the shape of the distribution, as we are not changing the underlying function ${ }^{12}$, which means that we will

[^9]still be able to meaningfully compare them.
If we are to consider $E_{t k}(x)$ for non-integer values of x, there is one last problem we need to fix. Whereas continous probability distributions use area to determine probability, discrete ones use sums. This means that we need to rescale $E_{t c k}(x)$ to ensure the area under its PDF in the interval $\left[v_{k}, v_{k}+v_{l}\right]$ (the interval on which it is non-zero) is equal to 1 , instead of its sum at integer values. This can be achevied by dividing the function by its integral on that interval. For the sake of clarity, the following demonstration will assume $x \in\left[v_{k}, v_{k}+v_{l}\right]$ because it is the only part of the function which will be affected by the rescaling.
\[

$$
\begin{aligned}
E_{t c k}(x) & =\frac{E_{t k}(x)}{\int_{v_{k}}^{v_{k}+v l} E_{t k}(t) \mathrm{d} t} \\
& =\frac{\binom{v_{l}}{x-v_{k}} \frac{\mathcal{B}\left(x+a_{k}, v_{e}-x+b_{k}\right)}{\mathcal{B}\left(v_{k}+a_{k}, v_{t}-v_{k}+b_{k}\right)}}{\int_{v_{k}}^{v_{k}+v l}\binom{v_{l}}{t-v_{k}} \frac{\mathcal{B}\left(t+a_{k}, v_{e}-t+b_{k}\right)}{\mathcal{B}\left(v_{k}+a_{k}, v_{t}-v_{k}+b_{k}\right)} \mathrm{d} t}
\end{aligned}
$$
\]

$$
=\frac{\binom{v_{l}}{x-v_{k}} \mathcal{B}\left(x+a_{k}, v_{e}-x+b_{k}\right)}{\int_{v_{k}}^{v_{k}+v l}\binom{v_{l}}{t-v_{k}} \mathcal{B}\left(t+a_{k}, v_{e}-t+b_{k}\right) \mathrm{d} t}
$$

$$
\cdot \frac{\left(\frac{1}{\mathcal{B}\left(v_{k}+a_{k}, v_{t}-v_{k}+b_{k}\right)}\right)}{\left(\frac{1}{\mathcal{B}\left(v_{k}+a_{k}, v_{t}-v_{k}+b_{k}\right)}\right)}
$$

$$
=\frac{\binom{v_{l}}{x-v_{k}} \mathcal{B}\left(x+a_{k}, v_{e}-x+b_{k}\right)}{\int_{v_{k}}^{v_{k}+v l}\binom{v_{l}}{t-v_{k}} \mathcal{B}\left(t+a_{k}, v_{e}-t+b_{k}\right) \mathrm{d} t}
$$

$$
=\frac{\binom{v_{l}}{x-v_{k}} \frac{\Gamma\left(x+a_{k}\right) \Gamma\left(v_{e}-x+b_{k}\right)}{\Gamma\left(\left(x+a_{k}\right)+\left(v_{e}-x+b_{k}\right)\right)}}{\int_{v_{k}}^{v_{k}+v l}\binom{v_{l}}{t-v_{k}} \frac{\Gamma\left(t+a_{k}\right) \Gamma\left(v_{e}-t+b_{k}\right)}{\Gamma\left(\left(t+a_{k}\right)+\left(v_{e}-t+b_{k}\right)\right)} \mathrm{d} t}
$$

$$
=\frac{\binom{v_{l}}{x-v_{k}} \Gamma\left(x+a_{k}\right) \Gamma\left(v_{e}-x+b_{k}\right)}{\int_{v_{k}}^{v_{k}+v l}\binom{v_{l}}{t-v_{k}} \Gamma\left(t+a_{k}\right) \Gamma\left(v_{e}-t+b_{k}\right) \mathrm{d} t}
$$

$$
\cdot \frac{\left(\frac{1}{\Gamma\left(v_{e}+a_{k}+b_{k}\right)}\right)}{\left(\frac{1}{\Gamma\left(v_{e}+a_{k}+b_{k}\right)}\right)}
$$

$$
=\frac{\binom{v_{l}}{x-v_{k}} \Gamma\left(x+a_{k}\right) \Gamma\left(v_{e}-x+b_{k}\right)}{\int_{v_{k}}^{v_{k}+v l}\binom{v_{l}}{t-v_{k}} \Gamma\left(t+a_{k}\right) \Gamma\left(v_{e}-t+b_{k}\right) \mathrm{d} t}
$$

As a reminder, v_{k} is the number of votes of the candidate k, with a_{k} and b_{k} being the parameters of the beta distribution representing our prior beliefs about its share of the votes.

Keeping in mind the domain restrictions on the above expression, the following is the actual function:

$$
E_{t c k}(x)=
$$

$$
\begin{cases}0 & x<v_{k} \\ \frac{\binom{v_{l}}{x-v_{k}} \Gamma\left(x+a_{k}\right) \Gamma\left(v_{e}-x+b_{k}\right)}{\int_{v_{k}+v_{k}}^{v_{k}}\binom{v_{l}}{t-v_{k}} \Gamma\left(t+a_{k}\right) \Gamma\left(v_{e}-t+b_{k}\right) \mathrm{d} t} & v_{k} \leq x \leq v_{k}+v_{l} \\ 0 & v_{k}+v_{l}<x\end{cases}
$$

In the above, the goal was to simplify the expression not visually, but computationnaly. Later, to verify the accuracy of our model, we will need to run it somewhere between a few thousand and arround a million times. Why this is needed will be detailed then. This means that the computations we are doing need to be as quick as possible. To do so, I have taken out as many constants as possible from inside the integrals and simplified terms that cancelled out in the beta function, even though this arguably lead to a quite verbose expression.

Plotting this continuous and translated set of distributions gives us Figure 13.

Figure 13: The set of distributions $E_{t c}$
As we can see, the distributions have now been translated by the candidates' current vote counts. Furthethermore, just as we would expect, there is verry little difference in the shape of each distribution, because our discrete plots already had so many points that they looked continuous. The only noticeable change is the scale, due to the rescaling we did above.

We now finally have a set of continous probability distributions taking into account the current vote counts and the number of votes left to be counted. However, before using the formula derived in Section 4.6, we also need to find the CDF of $E_{t c k}$

Once again, the only relevant interval is $\left[v_{k}, v_{k}+\right.$ $\left.v_{l}\right]$, as the cumulative probability of having less than the current amount of votes is 0 and the cumulative probability of having more than the possible amount of votes is 1 . Therefore, let's assume this range for
the following demonstration.

$$
\begin{aligned}
& P\left(E_{c t k} \leq x\right)=\int_{v_{k}}^{x} E_{t c k}(r) \mathrm{d} r \quad P\left(E_{c t k} \leq x\right)= \\
& =\int_{v_{k}}^{x} \frac{\binom{v_{l}}{r-v_{k}} \Gamma\left(r+a_{k}\right) \Gamma\left(v_{e}-r+b_{k}\right)}{\binom{\left.\int_{v_{k}+v l}^{v_{k}} \begin{array}{c}
v_{l} \\
t-v_{k}
\end{array}\right) \Gamma\left(t+a_{k}\right)}{\Gamma\left(v_{e}-t+b_{k}\right) \mathrm{d} t}} \mathrm{~d} r \\
& =\frac{\int_{v_{k}}^{x}\binom{v_{l}}{r-v_{k}} \Gamma\left(r+a_{k}\right) \Gamma\left(v_{e}-r+b_{k}\right) \mathrm{d} r}{\int_{v_{k}}^{v_{k}+v l}\binom{v_{l}}{t-v_{k}} \Gamma\left(t+a_{k}\right) \Gamma\left(v_{e}-t+b_{k}\right) \mathrm{d} t} \\
& \begin{cases}0 & x<v_{k} \\
\frac{\int_{v_{k}}^{x}\binom{v_{l}}{r-v_{k}} \Gamma\left(r+a_{k}\right) \Gamma\left(v_{e}-r+b_{k}\right) \mathrm{d} r}{\int_{v_{k}+v l}^{v_{k}}\binom{v_{l}}{t-v_{k}} \Gamma\left(t+a_{k}\right) \Gamma\left(v_{e}-t+b_{k}\right) \mathrm{d} t} & v_{k} \leq x \leq v_{k}+v_{l} \\
1 & v_{k}+v_{l}<x\end{cases} \\
& \text { Remembering the equation from Section 4.6, we }
\end{aligned}
$$

Including the restrictions, the full definition of the CDF of $E_{c t k}$ would therefore be the following:
can now replace the terms with the expressions we found in this section.

$$
\begin{gathered}
P\left(\bigcap_{i=1}^{n} X_{k} \geq X_{i}\right)=\int_{a}^{b} P\left(X_{k}=x\right) \prod_{\substack{j=1 \\
j \neq k}}^{n} P\left(X_{j} \leq x\right) \mathrm{d} x \\
P\left(\bigcap_{i=1}^{n} E_{t c k} \geq E_{t c i}\right)=\int_{v_{k}}^{v_{k}+v_{l}} P\left(E_{t c k}=x\right) \prod_{\substack{j=1 \\
j \neq k}}^{n} P\left(E_{t c j} \leq x\right) \mathrm{d} x
\end{gathered}
$$

So, here it is. After all this work, we finally have a computable expression for the probability a candidate has of winning. As we can see, it uses the PDF of the candidate whose probability of winning we are searching for and the CDFs of the other candidates.

Using this formula with our example would give us the following predictions.

Table 1: Predictions from first and second model

Candidate \#	Section 4.6	Section 4.7
1	0.86658	0.96604
2	0.13183	0.03395
3	0.00012	0.00000
4	0.00004	0.00000
5	0.00000	0.00000

As we can see, the predictions change quite a bit once we account for the number of votes left. The probability of the first candidate winning has increased by arround 10 percentage points, decreasing the probability of other candidates winning. This makes sense, because the leading candidate not only has a higher probability of gaining a vote than his opponents, but also because it doesn't need to catch up to anyone.

It is to be noted that this expression is exceedingly
expansive to compute, as it necessitates the integral of the product of $(n-1)$ integrals for an n-party election, sometimes taking upwards of 1 min , even on a modern computer, for a single candidate. A quicker way to approximate it would therefore be an highly interesting extension to this paper.

5. Analyzing the Model

Now that we have a model, it would be most useful to be able to generate a plot in the same style and configuration as the one we used to visualize our collected data, seen in Figure 4.

As a reminder, what we have is a two-dimensional histogram showing the probability of the leading candidate winning if it lands in a given bin of percentage of votes counted and percentage lead. Also, it is important to remember that our data actually has 6 axes (the percentage of votes counted and the number of votes for each of the five candidates), which are indirectly reflected in the two we have chosen here. However, when looking at this figure, we assume that all the other factors average out.

Due to the time-cost of the expression we found, it

Figure 4: Plot of the collected data
is not really feasible to try and draw it continuously, especially when taking into account that we need to average it over all other factors, which would most likely involve even more integrals.

Therefore, we need to resort to an other method for visualizing it. The solution I found was to generate random points in the 6 -dimensional space, feeding them through the function we built and finally graphing in them in the same way that we did for the real-world data in Figure 4. The only difference in the graph is that the bins would now be coloured based on the average of the points they were containing, as each point already represents the probability for a lead candidate to be elected.

However, we need to keep in mind that all the other factors should not necesseraly be uniformly random, but distributed in some way in order to make our random data set more similar to the real-world.

This is why the total number of votes was generated using the normal distribution found in Section 3 (mean of 43476 and standard deviation of 13106), truncated to a reasonnable range, 8000 to 80000 , in order to prevent ridiculously small or large values to come in and skew our graph. These bounds were chosen based on the constituencies with the most / the least votes.

The principal downside to using random points is that it allows for some random variation in the graphs, which is why the graphs below were made with as many points as possible.

Plotting the graph described above yields Figure 14.

Figure 14: Plot of the model from Section 4.7
As we may notice, there is something horribly wrong here: the plot is completely yellow! If our model predicts a 0.95 probability of winning even when only 0% to 16.67% of votes were counted and the leading candidate only had 0% to 16.67% of lead, it means that it gets really quite convinced about future outcomes even after seeing only very little, very unconvincing, data. This means that each vote we feed the model carries too much certainty.

The simplest fix for this would therefore be to scale down the number of votes we give the model by a certain scaling constant, let's call it S, in order to diminish their importance. The rationale for this probably lies in the fact that we assumed each vote to be completely independent, even though this is probably not the case in real-life, where many factors influence the relation between different votes.

Examples of this may include: (I) opinions varying between different geographic parts of the constituency (II) herd mentality taking place (III) individuals trying to account for the failures of the first-past-the-post voting system (not voting for their favorite candidate in order to prevent a candidate they dislike getting into office), although this is probably more a humanities question than a mathematical one.

Applying this fix to our model is fortunately really quite trivial. In fact, we only need to divide each value of the set of votes per candidate v by the scaling
constant S before calculating the total number of votes v_{t}, the number of expected votes v_{e} and the expected number of votes left to be counted v_{l}. After this is done, we can simply use the formula found in Section 4.7.

For example, using the example data from Section 4 and a scaling constant $S=10$, we would get the following values.

$$
\begin{aligned}
n & =5 \\
v & =\left\{\frac{60}{10}, \frac{50}{10}, \frac{36}{10}, \frac{34}{10}, \frac{20}{10}\right\} \\
& =\{6,5,3.6,3.4,2,1\} \\
v_{t} & =6+5+3.6+3.4+2=20 \\
b_{c} & =10 \\
b_{t} & =16 \\
v_{e} & =\frac{16}{10}(200)=32 \\
v_{l} & =32-20=12
\end{aligned}
$$

This simply has the effect of scaling everyone of those calculated values by a factor of S, in this case 10. This means that we now consider the first candidate to have 6 votes, the second 5 , the third 3.6 , etc. Furthermore, the total number of votes v_{t} is now 20 instead of 200 , the expected number of votes v_{e} is is 32 instead of 320 and the expected number of votes left v_{l} is 12 instead of 120 .

As justified earlier in Section 4.7, it is perfectly valid to use non-integer values in our function, as it doesn't rely on any integer-only functions or operations.

With this scaling back of $S=10$, we now would get the following probabilities as our predictions.

Table 2: Predictions from first, second and third model

Candidate \#	Section 4.6	Section 4.7	Section 5
1	0.86658	0.96604	0.66200
2	0.13183	0.03395	0.25740
3	0.00012	0.00000	0.04492
4	0.00004	0.00000	0.03321
5	0.00000	0.00000	0.00246

As we can see, the model with the scaling down produces values that are much much closer to each
other. The model got a lot calculated a much smaller probability for the first candidate to win and a much bigger one for all the others, just as we wanted.

An other nice benefit of scaling back the number of votes by a scaling factor is that this greatly decreases the time required to compute values with the model. It is hard to definitively conclude why this is the case without a depper look into the way the mathematics engine used (in my case, Wolfram Mathematica [30]) approximates integrals, but one could suppose that this is due to the values we are working with being much smaller as a result of the scaling down.

However, we now need to find an optimal value for S that maximizes the accuracy of our model ${ }^{13}$. First, we need to define a metric for how good a certain value of S is. I believe a sufficient way to evaluate this would be to generate a plot of the model for a certain value of S and look at the difference, for each bin, between the calculated probability of the leading candidate winning and the real-world probability from the equivalent bin. Then, we could take the average of these differences and use that as our metric for the value of S. Our goal would then be to find the value of S that minimizes this average error. This can be visualized in Figure 15.

Figure 15: Plot of the error in the model for

[^10]In Figure 15, we can see how the error varies bin per bin, from approximately 0 at 33.33% to 50% of lead and 83.33% to 100% of votes counted up to approximately 0.25 at 0% to 16.67% of lead and 50% to 66.67% of votes counted. Calculating the average of the different bins in this plot would yield an average error of approximately 0.0596 .

However, it is important to realize that this graph is susceptible to quite a few sources of error ${ }^{14}$:

1. The real-world data does probably contain quite a few anomalies due to the relatively small dataset gathered (approximately 600 points divided in 36 bins only leaves about 16 points per bin, with some having much less).
2. This also means that changing the number of bins would probably change the average error in the plot due to point boundaries moving.
3. The model plot being generated from random points, it is also somewhat susceptible to random error.
For example, the bin at 0% to 16.67% of lead and 50% to 66.67% in the real world data-plot does seem to have an abnormally low probability of the leading candidate being elected compared to its neighbours, as can be seen in Figure 4.

Furthermore, many different error calculations could have been used. For example, as we only look at the average, we do not take into account the variation of the error. The one selected here gives an idea of when looking at a value from the model, what should we expect the error on the probability to be.

Calculating the average error for some values of S gives the following results ${ }^{15}$:

Those points where selected almost randomly within a reasonable range of values for S (1 to 1000), while approximately using an approximate binary-search inspired algorithm (starting at the extremes of the reasonable range values and recursively testing values in their middle). The point $S=251$ was also selected, as it is approximately the average number of votes

[^11]Table 3: Values of S tested with the number of random points used and the average error

Value of S	Number of random points	Average error
1	835	0.0999
3	2865	0.0972
100	5000	0.0596
251	5000	0.0449
376	5000	0.0498
500	5000	0.0495
544	5000	0.0542
587	5000	0.0550
1000	5000	0.0818

per ballot box in the collected dataset.
Out of these points, $S=251$ seems to be the optimal value, having the smallest average error. This seems to indicate that even though individual votes are not truly independent, individual ballot boxes seem to be, as they give an outcome really quite close to the real-world data, with an average error of only approximately 0.0449 . This version of the model and its error can be visualized in Figures 16 and 17.

Figure 16: Plot of the model for $S=251$
As we can see, the mathematical model with $S=$ 251 produces an output (Figure 16) really quite similar to the real-world data (Figure 4), to the exceptions of some anomalies.

This is in terms shown in Figure 17 by a mostly blue graph, indicating a very small ber bin difference and, therefore, a very small average difference.

Figure 16 also shows the general trend we were

Figure 4: Plot of the collected data

Figure 17: Plot of the error in the model for $S=251$
expecting: the more votes are counted and the more lead the leading candidate has, the higher are his changes of winning. We can also observe other, more specific, trends, such as the fact that the probability of being elected gets really quite close to 1 as soon as more than approximately 16.67% of votes are counted and that there is more than 16.67% lead.

6. Conclusion

In conclusion, thanks to the tools of conditional probability, we were able to build a mathematical model to calculate the probability that a certain candidate in a constituency has to win. To do so, we first built a likelihood function to summarize the probability to
observe the current evidence (the number of votes for each candidate) and then constructed our prior beliefs using prior elicitation to summarize what we thought about each candidate before watching the election, based on, for example, survey data. We were then able to combine those two pieces of information using Bayes' theorem to obtain a probability distribution representing the probability that a certain candidate had a certain probability to win the next vote. Using a translated beta-binomial distribution, we were then able to find the final expected number of votes per candidate, which we could then compare to find the probability that a certain candidate would win. Finally, we realized that we needed to scale back the number of votes we were feeding into the model in order to make its output be much closer to the realworld data we gathered in the beginning. The optimal value we found for the scaling factor 251 , although the optimization techniques used here where less than optimal.

7. Biblography

[1] "Bayesian Statistics, Simulation and Software - The beta-binomial distribution." (May 28, 2005), [Online]. Available: https://people.math.aau.dk/~slb/kurser/r-11/betabin.pdf (visited on 12/22/2022).
[2] "Elections Canada." (n.d.), [Online]. Available: https://www.elections.ca/ (visited on 12/17/2022).
[3] "Elections Ontario." (n.d.), [Online]. Available: https://www.elections.on.ca/en.html (visited on 12/17/2022).
[4] "Élections Québec." (n.d.), [Online]. Available: https://www.electionsquebec.qc.ca/ (visited on $12 / 17 / 2022$).
[5] L. Fawcett. "MAS2317/3317: Introduction to Bayesian Statistics - Chapter 2: Bayes' Theorem for Distributions - Lecture Notes." (2015), [Online]. Available: https://www.mas.ncl.ac.uk/~nlf8/ teaching/mas2317/notes/chapter2.pdf (visited on 12/18/2022).
[6] L. Fawcett. "MAS2317/3317: Introduction to Bayesian Statistics - Chapter 3: Prior Elicitation Lecture Notes." (2015), [Online]. Available: https://www.mas.ncl.ac.uk/~nlf8/teaching/mas2317/ notes/chapter3.pdf (visited on 12/18/2022).
[7] L. Fawcett. "MAS2317/3317: Introduction to Bayesian Statistics - Chapter 3: Prior Elicitation Slides." (2015), [Online]. Available: https://www.mas.ncl.ac.uk/~nlf8/teaching/mas2317/notes/ slides3.pdf (visited on 12/18/2022).
[8] L. Gagné, "Marie-Josée Savard déclarée gagnante par erreur : mais que s'est-il passé? - Élections municipales au Québec 2021," Radio-Canada.ca, [Online]. Available: https://ici.radio-canada. ca/nouvelle/1838339/erreur-prediction-victoire-course-mairie-quebec-medias-radio-canada-tva-marie-josee-savard-bruno-marchand (visited on 11/27/2022).
[9] Léger. "Élections provinciales : Montréal et laval - 10 septembre 2022." (Sep. 10, 2022), [Online]. Available: https://leger360.com/fr/intentions-de-votes/elections-provinciales-montreal-et-laval-10-septembre-2022/ (visited on 12/19/2022).
[10] J. Orloff and J. Bloom. "Beta Distributions." (n.d.), [Online]. Available: https://math.mit.edu/~dav/ 05. dir/class14-prep-a.pdf (visited on 12/22/2022).
[11] PennState: Statistics Online Courses. "7.2 - Probability Mass Functions - STAT 414." (n.d.), [Online]. Available: https://online.stat.psu.edu/stat414/lesson/7/7.2 (visited on 12/18/2022).
[12] Radio-Canada Info. "Revoyez la soirée électorale fédérale 2019." (Oct. 21, 2019), [Online]. Available: https://www. youtube.com/watch?v=D3tqBHh5IjY (visited on 12/17/2022).
[13] Radio-Canada Info. "Soirée électorale 2021 au Canada." (Sep. 20, 2021), [Online]. Available: https: //www. youtube.com/watch?v=E3PKiPiwW8o (visited on 12/17/2022).
[14] Radio-Canada Info. "Élections en Ontario 2022 : La soirée électorale." (Jun. 2, 2022), [Online]. Available: https://www. youtube.com/watch?v=JNHz4hzuN90 (visited on 12/17/2022).
[15] Radio-Canada Info. "Élections Québec 2022: La soirée électorale." (Oct. 3, 2022), [Online]. Available: https://www. youtube.com/watch?v=EkV28Wew-1Q (visited on 12/17/2022).
[16] Veritasium. "How To Update Your Beliefs Systematically - Bayes' Theorem." (Apr. 5, 2017), [Online]. Available: https://www.youtube.com/watch?v=R13BD8qKeTg (visited on 12/23/2022).
[17] E. W. Weisstein. "Beta Binomial Distribution." (n.d.), [Online]. Available: https://mathworld. wolfram.com/BetaBinomialDistribution.html (visited on 12/23/2022).
[18] E. W. Weisstein. "Distribution function." (n.d.), [Online]. Available: https://mathworld.wolfram. com/DistributionFunction.html (visited on 12/21/2022).
[19] E. W. Weisstein. "Bayes' theorem." (n.d.), [Online]. Available: https://mathworld.wolfram. com/ BayesTheorem.html (visited on 12/19/2022).
[20] E. W. Weisstein. "Bayesian analysis." (n.d.), [Online]. Available: https://mathworld.wolfram.com/ BayesianAnalysis.html (visited on 12/18/2022).
$[21]$ E. W. Weisstein. "Beta distribution." (n.d.), [Online]. Available: https://mathworld.wolfram.com/ BetaDistribution.html (visited on 12/18/2022).
[22] E. W. Weisstein. "Beta function." (n.d.), [Online]. Available: https://mathworld.wolfram.com/ BetaFunction.html (visited on $12 / 18 / 2022$).
[23] E. W. Weisstein. "Binomial Coefficient." (n.d.), [Online]. Available: https://mathworld. wolfram. com/BinomialCoefficient.html (visited on 01/05/2023).
$[24]$ E. W. Weisstein. "Gamma function." (n.d.), [Online]. Available: https://mathworld.wolfram.com/ GammaFunction.html (visited on 12/18/2022).
[25] E. W. Weisstein. "Incomplete beta function." (n.d.), [Online]. Available: https://mathworld.wolfram. com/IncompleteBetaFunction.html (visited on 12/21/2022).
$[26]$ E. W. Weisstein. "Law of Large Numbers." (n.d.), [Online]. Available: https://mathworld.wolfram. com/LawofLargeNumbers.html (visited on 12/23/2022).
[27] E. W. Weisstein. "Regularized beta function." (n.d.), [Online]. Available: https://mathworld.wolfram. com/RegularizedBetaFunction.html (visited on 12/21/2022).
[28] E. W. Weisstein. "Uniform distribution." (n.d.), [Online]. Available: https://mathworld. wolfram. com/UniformDistribution.html (visited on 12/18/2022).
[29] whuber. "What is $P\left(X_{1}>X_{2}, X_{1}>X_{3}, \ldots, X_{1}>X_{n}\right)$?" (Nov. 21, 2012), [Online]. Available: https: //stats.stackexchange.com/a/44142 (visited on 01/05/2023).
[30] "Wolfram Mathematica: Modern Technical Computing." (n.d.), [Online]. Available: https ://www . wolfram.com/mathematica/ (visited on $12 / 19 / 2022$).

Appendices

A．Collected Data

Constituency	Boxes Counted	Total Boxes	RDI Elected	First	First Count	Second	Second Count	Third	Third Count	Fourth	Fourth Count	Fifth	Fifth Count	Total Votes	End Winner	End Total Votes
		210	No	${ }^{\text {NDP }}$	17	${ }_{\text {pPC }}$	${ }^{12}$	${ }_{\text {LPC }}$	8	${ }_{\text {cPC }}$	4	Other	0	${ }^{41}$	${ }^{\text {BQ }}$	${ }^{28436}$
		${ }_{218}^{263}$	No	${ }^{\text {Bo }}$	${ }_{130}^{130}$	${ }_{\text {Lpc }}^{\text {Lpo }}$	${ }_{10}^{75}$	${ }_{\substack{\text { cpC } \\ \text { PPC }}}^{\text {c }}$	${ }_{6}^{46}$	${ }_{\text {PpC }}^{\text {PpC }}$	${ }_{13}^{13}$	${ }_{\text {Other }}^{\text {Other }}$	：	${ }_{5}^{264}$	${ }_{\text {BQ }}^{\text {BPC }}$	${ }_{45885}$
	${ }^{25}$	${ }_{218}^{218}$	No	${ }_{\text {LPC }}^{\text {LPC }}$	34 1429	${ }_{\text {CPC }}^{\text {NDP }}$	${ }_{129}^{10}$	$\underbrace{\text { cep }}_{\substack{\text { PpC } \\ \text { NDP }}}$	${ }_{290}^{69}$	${ }_{\text {crec }}^{\text {PrC }}$	208	${ }_{\text {Other }}^{\text {Other }}$	\％	${ }^{5336}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{4}^{429292}$
	${ }_{60}^{1}$	${ }_{234}^{234}$	No	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{5017}^{635}$	${ }_{\text {BQ }}^{\text {BQ }}$	39 2147		${ }_{1384}$	${ }_{\text {CPC }}^{\text {PrC }}$	${ }_{861}^{2}$	${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}^{0}$	1099	${ }_{\text {LPC }}^{\text {LpC }}$	${ }_{\substack{50409 \\ \text { 50409 }}}$
	216	220	No	NDP	14216	cpi	10349	${ }_{\text {LpC }}$	7901	ppc	2772	Other	。	${ }_{35238}$	nDP	39523
argentelil la petite	1	253	No	${ }_{\text {LPC }}$	16	${ }^{\text {BQ }}$	4	${ }_{\text {cPa }}$	3	Other	2	Other	0	${ }^{25}$	${ }_{\text {LPC }}$	50613
argenteull la petite	so	253	No	BQ	4514	LPC	4506	CPC	1585	NDP	${ }^{84}$	Other	。	11448	LPC	50613
argenteulil La petite	${ }^{250}$	${ }^{253}$	No	${ }_{\text {LPC }}$	18064	BQ	16975	cpa	${ }_{6213}$	NDP	${ }^{3253}$	Other	。	${ }_{4} 4505$	${ }_{\text {LPC }}$	50613
ANATION	250	${ }_{233}^{253}$	No	${ }_{\text {LPC }}$	${ }^{18064}$	${ }_{\text {cPC }}$	${ }_{15}$	NDP	${ }_{2}{ }_{2}$	${ }_{\text {PPC }}$	${ }^{3253}$	Other	${ }_{0}$	${ }_{38}$	LPC	${ }_{37144}$
AVALON	${ }_{61}^{32}$	${ }_{233}^{233}$	${ }_{\text {No }}$	$\underset{\substack{\text { LPC } \\ \text { LPC }}}{\text { cec }}$	${ }_{\substack{1714 \\ 3507}}^{\substack{\text { a }}}$	${ }_{\substack{\text { cpe } \\ \text { CPC }}}$	（1280	${ }_{\substack{\text { NDP } \\ \text { NDP }}}$	${ }_{793}^{388}$	${ }_{\text {PpC }}^{\text {PpC }}$	${ }_{\text {c }}^{66}$	${ }_{\text {Ofer }}^{\text {Other }}$ Other	${ }_{0}^{0}$	348 7126	${ }_{\substack{\text { LPCC }}}^{\text {LPC }}$	${ }_{\substack{37144 \\ 37144}}$
avignon lat mitis matane	1	206	No	BQ	177	${ }_{\text {LPC }}$	55	cpa	32	NDP	11	Other	。	275	вQ	33075
avignon Lai mitis matane	${ }^{193}$	206	No	BQ^{8}	18202	LpC	6361	${ }_{\text {cpa }}$	2681	NDP	1428	Other	。	28672	${ }^{\text {Bq }}$	33075
Beale beauce	${ }_{11}^{11}$	${ }_{272}^{272}$	${ }_{\text {No }}^{\text {No }}$	${ }_{\text {CPC }}^{\text {LPC }}$	${ }_{368}^{3}$		1	$\underset{\substack{\text { BQ } \\ \text { LPC }}}{\text { ced }}$	${ }_{96}^{1}$	${ }_{\substack{\text { PpC } \\ \text { PPC }}}$	${ }_{91}^{1}$	${ }_{\substack{\text { Other } \\ \text { Other }}}$	：	${ }_{6}^{6}$	${ }_{\text {cpe }}^{\text {cpC }}$	${ }_{\substack{56980 \\ 5098}}$
${ }_{\text {chen }}^{\text {BEAUCE }}$	${ }_{35}^{11}$	${ }_{272}^{272}$	No	${ }_{\text {CPC }}^{\text {cpe }}$	${ }_{\text {cher }}^{358}$	${ }_{\text {PPC }}^{\text {BQ }}$	${ }_{977}^{111}$	${ }_{\text {Bq }}^{\text {LPC }}$	${ }_{738}$	$\stackrel{\text { PpC }}{\text { LPC }}$	${ }_{715}^{91}$	$\underset{\substack{\text { Other } \\ \text { Other }}}{\text { Oter }}$	${ }_{0}^{0}$	${ }_{\text {8975 }}^{666}$	${ }_{\text {CPC }}^{\text {cpe }}$	
	${ }^{139}$	${ }^{221}$	No	${ }^{\text {Bq }}$	10946	${ }_{\text {cpe }}$	${ }_{7637}$	${ }_{\text {LpC }}$	${ }_{5387}$	NDP	1043	Other	0	${ }^{25013}$	BQ	50136
beauport himoliou	5	${ }^{208}$	No	${ }^{\text {LPC }}$	${ }^{238}$	${ }_{\text {cpe }}$	${ }_{152}$	${ }^{\text {BQ }}$	145	nDP	18	Other	\bigcirc	${ }^{553}$	${ }^{\text {BQ }}$	${ }^{48664}$
beaport limoliou	${ }_{62}^{10}$	${ }_{208}^{208}$	No	${ }_{\substack{\text { LpC } \\ \text { CPC }}}^{\text {cec }}$	${ }_{2685}^{438}$	${ }_{\substack{\text { cpa } \\ \text { BQ }}}$	${ }_{\substack{400 \\ 2616}}$	${ }_{\text {che }}^{\text {BR }}$	${ }_{255}^{355}$	${ }_{\text {NDP }}^{\text {NDP }}$	（86	${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}$	1279 8849	${ }_{80}^{8 Q}$	${ }_{\substack{488644 \\ 4864}}$
beauport limoliou		${ }^{208}$	No	${ }_{\text {crec }}^{\text {cre }}$	${ }_{3103}^{3103}$	${ }^{\text {BQ }}$	${ }^{3070}$	${ }_{\text {LpC }}^{\text {Lp }}$	${ }^{2873}$	NDP	${ }_{1210}^{1210}$	Other	\bigcirc	10256	${ }^{\text {BQ }}$	${ }^{48644}$
beaport limoliou	85	$\underset{208}{208}$	No	${ }_{\text {CPC }}^{\text {CPC }}$		${ }_{\text {BQ }}^{\text {BQ }}$		${ }_{\text {LPC }}^{\text {LpC }}$	${ }_{\substack{2968 \\ 3420}}$	${ }_{\text {NDP }}^{\text {NDP }}$	1239 1455 $\substack{\text { a }}$	${ }_{\text {Ofer }}^{\text {Other }}$ Other	\％	${ }_{\text {cher }}^{10204}$	${ }_{82}^{\text {BR }}$	${ }_{488644}^{48644}$
beauport limollou	${ }_{10}^{107}$	${ }_{202}^{208}$	No	$\underset{\substack{\text { croc } \\ \text { LPC }}}{\text { cen }}$	${ }_{\substack{4648 \\ 64}}$	${ }_{\text {CPC }}^{\text {BQ }}$	${ }_{25}^{4609}$	${ }_{\text {PpCC }}^{\text {LpC }}$	${ }_{20}^{4187}$	${ }_{\text {NDP }}^{\text {NDP }}$	$\underset{\substack{1702 \\ 14}}{ }$	${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}$	${ }_{\substack{15146 \\ 123}}$	${ }_{\text {ciec }}^{\text {BPC }}$	${ }_{\substack{48944 \\ 4945}}$
beausbjour	${ }_{25}$	${ }_{202}^{202}$	No	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{2036}$	${ }_{\text {cre }}$	${ }_{620}^{25}$	NDP	${ }_{385}^{20}$	${ }_{\text {PPC }}$	${ }_{316}^{14}$	Other	\bigcirc	${ }_{3357}^{123}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{49145}$
becancour micol	3	${ }^{243}$	No	${ }^{\text {Bq }}$	${ }_{87}$	${ }_{\text {LpC }}$	${ }^{71}$	Other	${ }^{10}$	${ }_{\text {cpa }}$	${ }^{7}$	Other	－	175	${ }^{\text {BQ }}$	50007
becancour nicolet	25	243	No	BQ	1676	PC	524	cpi	${ }_{342}$	NDP	${ }^{133}$	Other	0	2675	вq	50007
becancour $\operatorname{saureL}_{\text {nicolet }}$	100	${ }_{24}$	No	вQ	${ }_{7727}$	${ }_{\text {Lpc }}$	${ }^{2471}$	${ }_{\text {cPc }}$	${ }^{2361}$	NDP	${ }_{827}$	Other	－	13386	BQ	50007
BELLECHASSE LES ETCHEMINS LEvis	160	326	No	CPC	${ }^{11276}$	BQ	${ }^{6627}$	Lpc	3500	ndp	1171	Other	0	20574	${ }_{\text {cPC }}$	${ }_{63182}$
BELOELL CHAMBLY	5	${ }_{292}^{292}$	No	${ }^{\text {BQ }}$	${ }_{383}^{383}$	${ }_{\text {LpC }}^{\text {Lp }}$	${ }^{147}$	${ }_{\text {cpe }}$	${ }_{29}^{49}$	Npp	${ }_{24}^{44}$	Other	\bigcirc	${ }^{620}$	${ }^{\text {BQ }}$	${ }_{65324}$
BELoEIL Chambly	${ }_{36}$	${ }_{292}^{292}$	No	${ }_{\text {BR }}$	${ }_{5131}$	${ }_{\text {LPC }}$	${ }_{2166}$	${ }_{\text {cre }}$	${ }_{826}^{227}$	NDP	${ }_{703}^{20}$	Other	${ }_{0}$	${ }_{8826}$	${ }_{\text {BR }}$	${ }_{6}^{65324}$
（berthirr Maskinonge	${ }_{67}^{1}$	${ }^{274}$	No	${ }_{\text {NDP }}^{\text {Nip }}$	${ }_{3120}^{6120}$	${ }_{\text {BQ }}^{\text {BQ }}$	${ }_{2537}^{4}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{1186}$	${ }_{\text {cre }}^{\text {CPC }}$	${ }_{1086}^{1086}$	${ }_{\text {O }}^{\text {Other }}$ Other	－	${ }_{7929}^{14}$	${ }_{\text {BQ }}^{\text {BQ }}$	${ }_{\substack{\text { 5，9945 }}}^{594945}$
BERTHER MASKINONGE	${ }_{1}^{1300}$	${ }_{274}^{274}$	No	${ }_{\text {NDP }}^{\text {NDP }}$	${ }_{7}^{6297}$	${ }_{\text {BQ }}^{\text {BQ }}$	${ }_{\substack{5344 \\ 6886}}^{\text {cen }}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{\substack{2457 \\ 3055}}$	${ }_{\text {CPC }}^{\text {CPC }}$	${ }_{204}^{2037}$	${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}^{0}$	${ }_{\substack{16135 \\ 20178}}$	${ }_{\text {BQ }}^{\text {BQ }}$	
BERTHER MASKINONGE	215	274	${ }_{\text {No }}^{\text {No }}$	$\underset{\text { cre }}{\substack{\text { NDP }}}$	10517 16736 18	${ }_{\text {BR }}^{\text {M }}$	9936 16131	${ }_{\text {LPC }}^{\text {LpC }}$	${ }_{7778}^{4373}$	${ }_{\text {crec }}^{\text {CPC }}$		${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}^{0}$	${ }_{4}^{285812}$	${ }_{\text {BQ }}^{\text {BQ }}$	
bertier maskinonge	${ }_{1}^{266}$	274 275	No	$\underset{\substack{\text { BQ } \\ \text { LPC }}}{\text { cec }}$	${ }_{8}^{17275}$	${ }_{\text {CPP }}^{\text {NDP }}$	16349 3	${ }_{\substack{\text { Lpc } \\ \text { NDP }}}$	${ }^{7934}$	${ }_{\substack{\text { cpe } \\ \text { PrC }}}$	5264	${ }_{\text {Other }}^{\text {Other }}$ Other	${ }_{0}^{0}$	${ }_{\substack{46822 \\ 11}}$	${ }_{\text {cipc }}^{\text {BQ }}$	${ }_{\substack{59945 \\ 2999}}$
bonaista burin trintry	${ }_{15}^{2}$	275 275	No	$\underset{\substack{\text { CPC } \\ \text { CPC }}}{\text { cec }}$	${ }_{\substack{50 \\ 467}}$	$\substack{\text { LpC } \\ \text { LPC }}_{\text {cec }}$	${ }_{437}^{39}$	Nop	5 51	${ }_{\substack{\text { PpC } \\ \text { PPC }}}^{\text {cec }}$	$\stackrel{1}{51}$	${ }_{\text {OTher }}^{\text {Other }}$ Other	\％	${ }_{\text {105 }}^{195}$	${ }_{\substack{\text { LpC } \\ \text { LPC }}}^{\text {cec }}$	${ }_{20991}^{29991}$
bonavista burin trinty	${ }_{\substack{35 \\ 35}}$	${ }_{275}^{275}$	No	${ }_{\substack{\text { LPC } \\ \text { cre }}}^{\text {cec }}$	$\substack { 1219 \\ \begin{subarray}{c}{116{ 1 2 1 9 \\ \begin{subarray} { c } { 1 1 6 } } \\{2160} \end{subarray}$	${ }_{\text {cre }}$	${ }_{\substack{1135 \\ 2139}}$	${ }_{\text {Npp }}$	${ }_{\substack{173 \\ 174}}$	${ }_{\substack{\text { PpC } \\ \text { PpC }}}$	${ }_{1}^{117}$	Other	\bigcirc	${ }^{2644}$	${ }_{\text {LPC }}^{\text {LpC }}$	${ }_{20991}^{29991}$
bonavista burin trinty	200	275 $\substack{298 \\ 108}$	No			${ }_{\text {cra }}$	¢ ${ }_{\substack{8189 \\ 619}}$	Nop	1591 104 304	${ }_{\substack{\text { PpC } \\ \text { CPC }}}^{\text {ce }}$	885 8.85 255	Other	：	${ }_{\substack{2092}}^{3054}$	${ }_{\substack{\text { LPC } \\ \text { LPC }}}^{\text {cec }}$	${ }_{\substack{29991 \\ 39932}}^{\text {and }}$
Brome misisiauor	${ }_{1}{ }_{195}$	${ }^{1279}$	No	${ }_{\text {BQ }}^{\text {LPC }}$	${ }_{9}^{2365}$	${ }_{\text {che }}^{\text {LPC }}$	${ }_{9499}$	${ }_{\text {CPP }}$	${ }_{\substack{37 \\ 4708 \\ 4}}$	cre	${ }_{\substack{2175 \\ 2170}}$	Other	\bigcirc	${ }^{35598}$	${ }_{\text {LPPC }}^{\text {LTC }}$	
brossard sain minmiert	${ }_{\text {c }}^{235}$	－${ }_{234}^{279}$	No		${ }_{4001}^{11797}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{\substack{11508 \\ 1318}}^{\text {P18 }}$	${ }_{\text {CPC }}^{\text {CPC }}$	${ }_{748}^{5622}$	NDP	${ }_{\substack{2648 \\ 739}}$	$\underset{\substack{\text { Other } \\ \text { Other }}}{\text { oter }}$	：	${ }_{\substack{31675 \\ 6806}}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{\substack{61471 \\ 5256}}^{618}$
BURNABY SouTh	${ }_{35}^{27}$	${ }_{1}^{191}$	No	${ }_{\text {NDP }}$	${ }_{\substack{1056 \\ 1420}}$	${ }_{\text {LPC }}^{\text {LPC }}$	921 1228 1	${ }_{\text {CPC }}^{\text {CPC }}$	${ }_{1}^{739}$	${ }_{\text {Prec }}^{\text {Pr }}$	${ }_{129}^{101}$	${ }_{\text {O }}^{\text {Other }}$ Other	：	${ }_{\substack{2817 \\ 377}}^{28}$	${ }_{\text {NDP }}^{\text {NDP }}$	${ }_{\substack{40608 \\ 40608}}$
	${ }_{1}^{147}$	$\underset{214}{191}$	No	$\underset{\substack{\text { NDP } \\ \text { LPC }}}{\text { cein }}$	${ }_{34}^{10276}$	${ }_{\text {crec }}^{\text {LpC }}$	8083 ${ }_{34}$	$\mathrm{c}_{\text {cpe }}^{\text {NDP }}$		${ }_{\text {PPC }}^{\text {PrC }}$	${ }_{1}^{902}$	${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}^{\circ}$	${ }_{\substack{25187 \\ 95}}$	Nop	${ }_{\substack{40688 \\ 39360}}$
Cape bremon canso	95 18	${ }^{214}$	No	$\underset{\substack{\text { LPCC }}}{\text { LPC }}$	${ }_{\substack{6331 \\ 2069}}^{\substack{\text { cin }}}$	${ }_{\substack{\text { cpe } \\ \text { CPC }}}^{\text {ced }}$	${ }_{\substack{45278 \\ 1238}}$	${ }_{\text {NDP }}^{\text {NDP }}$	${ }_{362}^{2294}$	${ }_{\text {chec }}^{\text {PrC }}$	611 184	${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}$	${ }_{3853}^{13763}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{23094}^{3930}$
central nova	${ }_{70}$	${ }_{23}{ }^{23}$	No	${ }_{\text {LPC }}$	3312	CPC	2441	NDP	1205	${ }_{\text {pPC }}$	295	Other	0	${ }_{7253}$	${ }_{\text {LPC }}$	40474
$\underset{\substack{\text { Charlesbourg haute } \\ \text { SAINT Charles }}}{\text { cen }}$	145	${ }^{242}$	No	cpa	8830	${ }^{\text {BQ }}$	5382	${ }_{\text {LpC }}$	4577	NDP	1684	Other		20473	${ }^{\text {cPC }}$	57349
${ }_{\text {chateaguay lacolle }}^{\text {Chateauguay lacolle }}$	2 18	${ }_{222}^{222}$	${ }_{\text {No }}^{\text {No }}$	${ }_{80}^{\mathrm{BQ}}$	${ }_{\substack{164 \\ 1624}}$	${ }_{\text {LPC }}^{\text {LpC }}$	159 1145	${ }_{\text {crec }}^{\text {cpC }}$	${ }_{\substack{81 \\ 588}}$	${ }_{\substack{\text { PpC } \\ \text { NDP }}}^{\text {cen }}$	1930 19	${ }_{\text {Other }}^{\text {Other }}$	0	${ }_{3517}^{427}$	${ }_{\text {LPC }}^{\text {LpC }}$	${ }_{\substack{48883 \\ 4883}}^{4}$
	29 155 1	$\underset{\substack{222 \\ 222}}{2}$	No	${ }_{\text {Ba }}^{\text {Ba }}$		${ }_{\substack{\text { LpC } \\ \text { LPC }}}^{\text {cec }}$	2048 11926 189	${ }_{\substack{\text { cpe } \\ \text { CPC }}}^{\text {cec }}$	（1053	$\underset{\substack{\text { NDP } \\ \text { NDP }}}{ }$	378 2510	${ }_{\text {Ofer }}^{\text {Other }}$ Other	：	$\substack{6725 \\ 31331}_{\text {313，}}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{\substack{48883 \\ 48683}}$
CHICOUTIM LE FJJord	${ }_{100}^{4}$	${ }_{161}^{161}$	No	${ }_{\substack{\text { BPC }}}^{\text {CPC }}$	${ }_{7139}{ }^{95}$	${ }_{\text {coc }}^{\text {LPC }}$	${ }_{6151}^{77}$	${ }_{\text {crec }}^{\text {cpe }}$	${ }_{3}^{63}$	${ }_{\text {NDP }}^{\text {NDP }}$	${ }^{15} 1000$	${ }_{\text {Other }}^{\text {Other }}$	：	${ }_{\substack{250 \\ 17691}}^{200}$	${ }_{\text {cric }}^{\text {cpe }}$	${ }_{4}^{42006}$
	120 115	161 157	No	${ }_{\text {cpe }}^{\text {cpe }}$	9586 5025	${ }_{\text {LPC }}^{\text {BQ }}$	7966 3021	${ }_{\text {cpe }}^{\text {LPC }}$	4324 3014	NDP PPC	${ }_{\substack{1327 \\ 631}}$	Other		23203 11691	${ }_{\text {cpe }}^{\text {NDP }}$	42006 17927
coast of bays inkit enal		${ }^{246}$	－	＋pc	${ }^{23}$		，		－			Other			cpe	31834
	1														${ }^{\text {cpe }}$	${ }^{31834}$
$\xrightarrow{\text { NOTRE DAME }}$	${ }^{45}$	246	No	LPC	1397	CPC	1331	NDP	192	Other	${ }^{\circ}$	Other	${ }^{\circ}$	2920	cPC	${ }^{31834}$
Notre dammen	${ }^{80}$	${ }^{246}$	No	${ }^{\text {LPC }}$	3050	${ }^{\text {cPC }}$	${ }^{2961}$	NDP	${ }_{482}$	Other	${ }^{\circ}$	Oti	${ }^{\circ}$	${ }^{6493}$	${ }^{\text {cpa }}$	${ }^{31834}$
Coas notre dame	${ }^{120}$	246	No	${ }^{\text {cpa }}$	5161	LPC	4915	NDP	788	Other	0	Other	${ }^{\circ}$	${ }^{10864}$	${ }^{\text {cpa }}$	${ }^{31834}$
${ }_{\text {coast }}^{\text {cof bays central }}$	159	${ }^{246}$	No	CPC	${ }^{7260}$	${ }_{\text {LpC }}$	6849	NDP	1120	ther	0	Other	－	${ }^{1529}$	${ }^{\text {cpa }}$	1834

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Constituency \& Boxes Counted \& Total Boxes \& RDI Elected \& First \& First Count \& Second \& Second Count \& Third \& Third Count \& Fourth \& Fourth Count \& Fifth \& Fifth Count \& Total Votes \& End Winner \& End Total Votes \\
\hline \(\underset{\text { Coast of bays central }}{\text { Notre }}\) \& \({ }_{24} 4\) \& \({ }_{246}\) \& No \& \({ }_{\text {cpa }}\) \& \({ }^{13874}\) \& \({ }_{\text {LpC }}\) \& 13125 \& ndp \& 2140 \& other \& 0 \& Other \& 0 \& 29139 \& \({ }_{\text {cpa }}\) \& \({ }_{31834}\) \\
\hline \(\xrightarrow{\text { COMPTRN STANSTEAD }}\) \& \({ }^{220}\) \& \({ }_{278}^{275}\) \& No \& \& \({ }_{\substack{13988 \\ 742}}\) \& \(\underset{\substack{\text { BQ } \\ \text { LPC }}}{\text { cec }}\) \& \(\substack{1129 \\ 618}_{198}\) \& \(\underset{\substack{\text { cpC } \\ \text { NDP }}}{\text { cer }}\) \& \({ }_{\text {6511 }}^{600}\) \& \& \({ }_{28}^{2848}\) \& \(\xrightarrow{\text { Other }}\) \& \(\bigcirc\) \& （3896 \& \({ }_{\text {CPC }}^{\text {LPC }}\) \& \({ }_{\substack{\text { 47796 }}}^{\text {477 }}\) \\
\hline CUMBERLAND Colchester \& \({ }_{34}\) \& \({ }_{218}^{218}\) \& No \& \({ }_{\text {crec }}^{\text {cra }}\) \& 1578 \& \({ }_{\text {LPC }}^{\text {LPC }}\) \& \({ }_{1188}^{1188}\) \& NDP \& \({ }_{4}^{247}\) \& \({ }_{\text {PpC }}^{\text {PpC }}\) \& \({ }_{1} 164\) \& Other \& \(\bigcirc\) \& \({ }_{3377}^{1047}\) \& \({ }_{\text {cpe }}^{\text {cpe }}\) \& \({ }_{40417}\) \\
\hline DARTMOUTH COLE \& 108 \& 218 \& No \& DP \& 6310 \& \({ }_{\text {LPC }}\) \& 4637 \& \({ }_{\text {ppp }}\) \& 177 \& \({ }_{\text {PPC }}\) \& 631 \& \({ }_{\text {Other }}\) \& \({ }_{0}\) \& \({ }_{133}\) \& \({ }_{\text {LPC }}\) \& \({ }_{45628}\) \\
\hline dartmouth cole \& 15 \& 209 \& No \& \({ }_{\text {LPC }}\) \& 1229 \& NDP \& 1002 \& PPC \& 308 \& GPC \& \({ }^{77}\) \& Other \& 。 \& \({ }^{2616}\) \& \({ }_{\text {LPC }}\) \& \({ }^{45628}\) \\
\hline dorval hachine line lasalle \& \({ }_{69}\) \& 233 \& No \& \({ }_{\text {LPC }}\) \& \({ }_{5727}\) \& \({ }_{\text {BQ }}\) \& 1745 \& NDP \& \({ }_{1633}\) \& CPC \& \({ }_{1352}\) \& Other \& 。 \& \({ }_{10457}\) \& \({ }_{\text {Lpc }}\) \& 48141 \\
\hline DURHAM \& \({ }_{34}^{1}\) \& \({ }_{217}^{217}\) \& No \& \({ }_{\substack{\text { cre } \\ \text { CPC }}}^{\text {cer }}\) \& \({ }_{2884}^{29}\) \& \({ }_{\text {LPC }}^{\text {LpC }}\) \& \({ }_{1485}^{15}\) \& \({ }_{\text {NDP }}^{\text {NDP }}\) \& \({ }_{1010}^{4}\) \& \({ }_{\substack{\text { PpC } \\ \text { PPC }}}\) \& \({ }_{313}\) \& \({ }_{\text {Other }}^{\text {Other }}\) Other \& \({ }_{0}\) \& －\({ }_{568}\) \& \({ }_{\substack{\text { cpe } \\ \text { CPC }}}^{\text {cos }}\) \& \({ }_{\substack{67730 \\ 67730}}\) \\
\hline EDMONTON CENtre \& 3 \& \({ }_{209}^{209}\) \& No \& \({ }_{\text {LTPC }}^{\text {LPC }}\) \& 75 \& \({ }_{\text {CPC }}\) \& \({ }_{71}\) \& NDP \& \({ }_{37}\) \& \({ }_{\text {PpC }}\) \& 4 \& Other \& \％ \& （187 \& \(\stackrel{\text { LPC }}{\text { LPC }}\) \& \({ }_{49148}^{6750}\) \\
\hline edmonton mirathcona \& \({ }_{51}^{150}\) \& \begin{tabular}{|c}
216 \\
100 \\
1
\end{tabular} \& No \& \({ }_{\text {LPC }}^{\text {NTP }}\) \& \({ }_{\substack{17570 \\ 3010}}^{\text {a }}\) \& \({ }_{\text {cpe }}^{\text {cpe }}\) \& \({ }_{\substack{7847 \\ 2074}}^{7}\) \& \({ }_{\text {GPC }}^{\text {LpC }}\) \& \({ }_{\text {2394 }}^{2309}\) \& \& \({ }_{\substack{1558 \\ 620}}\) \& Other \& \({ }_{0}^{0}\) \& \({ }_{\substack{29279 \\ 640}}^{\text {a }}\) \& \({ }_{\text {LPP }}^{\text {NDP }}\) \& \(\underset{\substack{52233 \\ 19561}}{ }\) \\
\hline Elmwood transcona \& \({ }^{175}\) \& － 1188 \& No \& \(\stackrel{\text { NPP }}{ }\) \& \({ }^{15839}\) \& \({ }_{\text {cpe }}^{\text {cpe }}\) \& 8856 \& \(\underset{\substack{\text { LpC } \\ \text { CPC }}}{\text { cem }}\) \& \({ }_{4795}\) \& \(\underset{\text { PpC }}{\text { Pp }}\) \& \({ }^{18881}\) \& Other \& \(\bigcirc\) \& \({ }^{31371}\) \& \(\xrightarrow{\text { Nop }}\) \& \({ }_{\text {4 }}^{41839}\) \\
\hline \& \({ }_{6}^{1}\) \& \({ }_{\text {l }}^{154}\) \& No \& \({ }_{\text {cre }}^{\text {LPC }}\) \& \({ }_{784}^{3}\) \& \({ }_{\text {crec }}^{\text {cre }}\) \& \({ }_{466}\) \& \({ }_{\text {GPC }}^{\text {GPC }}\) \& 205 \& \({ }_{\text {NDP }}^{\text {NDP }}\) \& \({ }_{182}\) \& Other \& \({ }_{0}^{0}\) \& \({ }_{1637}\) \& \({ }_{\text {LPC }}^{\text {LPP }}\) \& \({ }_{4}^{44062}\) \\
\hline \(\underset{\substack{\text { Predericcon } \\ \text { FREDERICTON }}}{ }\) \& \({ }_{63}^{29}\) \& \(\underset{154}{154}\) \& No \& \({ }_{\substack{\text { cra } \\ \text { cra }}}^{\text {cec }}\) \& \({ }_{4235}^{2007}\) \& \({ }_{\text {LPC }}^{\text {LPC }}\) \& \({ }_{4101}^{1971}\) \& \& \({ }_{\substack{847 \\ 1750}}\) \& \({ }_{\text {GPC }}^{\text {NDP }}\) \& 779
1699 \& Other \& \({ }_{0}^{0}\) \& \({ }_{\substack{5604 \\ 11785}}\) \& \({ }_{\text {LPC }}^{\text {LPC }}\) \& \({ }_{44062}^{44062}\) \\
\hline Fredericton
FREDERICTON \& \({ }_{85}^{80}\) \& \(\underset{\substack{154 \\ 154 \\ 154 \\ \hline}}{ }\) \& No \& \({ }_{\substack{\text { crec } \\ \text { CPC }}}^{\text {ce }}\) \& \& \({ }_{\text {crec }}^{\text {cpe }}\) LPC \& 6109
6575 \& \({ }_{\text {NDP }}^{\text {NDP }}\) \& \({ }_{2299}^{2395}\) \& \({ }_{\text {GPC }}^{\text {GpC }}\) \& \({ }_{2}^{2354}\) \& \({ }_{\text {Other }}^{\text {Other }}\) Other \& \({ }_{0}^{0}\) \& 17730
18219 \& \({ }_{\text {LPC }}^{\text {LpC }}\) \& \({ }_{44062}^{44062}\) \\
\hline \(\underset{\substack{\text { fredericton } \\ \text { FREDERICTON }}}{ }\) \& \({ }_{\substack{104 \\ 148}}\) \& \(\underset{\substack{154 \\ 154}}{ }\) \& \({ }_{\text {No }}\) No \& \({ }_{\substack{\text { cre } \\ \text { LPC }}}^{\text {ceic }}\) \& （14844 \& \({ }_{\text {CPC }}^{\text {LpC }}\) \& \({ }_{\substack{8357 \\ 14524}}\) \& \(\underset{\substack{\text { NDP } \\ \text { NDP }}}{ }\) \& \& \(\underset{\substack{\text { GpC } \\ \text { GPC }}}{\text { cec }}\) \& \& \(\xrightarrow[\substack{\text { Other } \\ \text { Other }}]{\text { Oter }}\) \& \％ \& \& \({ }_{\substack{\text { LpC } \\ \text { LPC }}}^{\text {cec }}\) \& \({ }_{4}^{40662}\) \\
\hline fuddy royal \& 1
3
3 \& 200
200
200 \& No \& \& \({ }^{3}\) \& \(\xrightarrow{\text { NPP }}\) \& 3 \& \& \(\stackrel{1}{1}\) \& \({ }_{\substack{\text { PpC } \\ \text { PPC }}}^{\text {ce }}\) \& 1 \& Other \& \(\bigcirc\) \& \(\stackrel{8}{8}\) \& \({ }_{\text {crec }}^{\text {cpe }}\) \& \({ }^{443882}\) \\
\hline GASPresir Les lime de la \& 1 \& \({ }_{223}\) \& No \& вя \& 115 \& LPC \& 84 \& cPC \& \({ }^{43}\) \& NDP \& 5 \& Other \& 。 \& 247 \& \({ }_{\text {LPC }}\) \& 36858 \\
\hline GAsprsisi les lime de la \& 4 \& \({ }_{223}\) \& No \& вQ \& 212 \& \({ }_{\text {LPC }}\) \& \({ }_{208}\) \& cpa \& 70 \& nDP \& 40 \& Other \& 。 \& \({ }_{530}\) \& \({ }_{\text {LPc }}\) \& \({ }_{36858}\) \\
\hline \& 8 \& \({ }^{223}\) \& No \& LpC \& \({ }^{340}\) \& \({ }^{\text {BQ }}\) \& 326 \& \({ }_{\text {cPC }}\) \& 106 \& NDP \& 53 \& Other \& 。 \& 825 \& LPC \& \({ }^{36858}\) \\
\hline \& \({ }^{10}\) \& \({ }^{223}\) \& No \& вQ \& \({ }^{44}\) \& LPC \& \({ }^{413}\) \& cpa \& 143 \& NDP \& 59 \& Other \& 。 \& 1059 \& LPC \& \({ }^{36858}\) \\
\hline GAspestielite ines \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \\
\hline madeleine \& \({ }^{15}\) \& \({ }^{223}\) \& No \& \({ }_{\text {LPC }}\) \& \({ }^{833}\) \& \({ }^{\text {BQ }}\) \& \({ }^{706}\) \& \({ }^{\text {cPC }}\) \& 206 \& NDP \& \({ }^{97}\) \& Other \& 0 \& 1842 \& LPC \& \({ }^{36858}\) \\
\hline \& \({ }^{40}\) \& \({ }^{223}\) \& No， \& \({ }_{\text {LPC }}\) \& \({ }^{2276}\) \& \({ }^{\text {BQ }}\) \& 1772 \& \({ }_{\text {cPa }}\) \& \({ }^{411}\) \& nDP \& \({ }^{235}\) \& Other \& 0 \& 4694 \& \({ }_{\text {LPC }}\) \& \({ }^{36558}\) \\
\hline \(\underset{\text { MADELEINE }}{\text { GASPESIL }}\) \& \({ }_{5}\) \& \({ }^{223}\) \& No \& LpC \& 3089 \& \({ }^{\text {BQ }}\) \& 2478 \& \({ }_{\text {cPC }}\) \& 534 \& ndp \& \({ }^{293}\) \& Other \& 0 \& 6394 \& \({ }_{\text {LpC }}\) \& \({ }^{36558}\) \\
\hline \(\underset{\text { gatineau }}{\text { gativau }}\) \& \({ }_{65}^{1}\) \& \({ }_{223}^{223}\) \& No \& \({ }_{\substack{\text { LPC } \\ \text { LPC }}}^{\text {cef }}\) \& －549 \({ }_{6}^{54}\) \& \({ }_{\substack{\text { Othor } \\ \text { BQ }}}^{\text {cei }}\) \& 16
2847 \& \({ }_{\text {CPC }}^{\text {CPC }}\) \& \({ }_{134}^{4}\) \& \({ }_{\substack{\text { PpC } \\ \text { NDP }}}^{\text {cefer }}\) \& \({ }_{1052}^{2}\) \& \({ }_{\text {Other }}^{\text {Other }}\) \& － \& 76
11492 \& \({ }_{\text {LPC }}^{\text {LPC }}\) \& \({ }_{\substack{52497 \\ 52497}}\) \\
\hline hamilton centre \& \({ }_{1}^{13}\) \& \begin{tabular}{c}
184 \\
194 \\
194 \\
\hline 1
\end{tabular} \& No \& \& \({ }_{12651}^{14}\) \& \({ }_{\text {cre }}^{\text {LPC }}\) \& \({ }_{681}^{68}\) \& \(\underset{\text { NDP }}{\text { CPC }}\) \& －\({ }_{4}^{4}\) \& \({ }_{\substack{\text { GPPC } \\ \text { PPC }}}\) \& \(\stackrel{1}{1719}\) \& \(\xrightarrow{\text { Other }}\) Other \& \％ \& \({ }_{25201}^{24}\) \& \({ }_{\text {Lec }}^{\text {LpC }}\) \& \\
\hline Hovore Mercier \& 1 \& \({ }^{219}\) \& No \& \(\stackrel{\text { LpC }}{\text { LPC }}\) \& ¢88 \& \({ }^{\text {Ba }}\) \& \({ }^{14}\) \& \(\underset{\text { crec }}{\text { cre }}\) \& \({ }_{13}^{12}\) \& \({ }_{\text {Nsp }}^{\text {Nop }}\) \& \({ }_{13}^{11}\) \& Other \& \(\bigcirc\) \& （100 \& \({ }_{\text {LPC }}^{\text {LPC }}\) \& 48809 \\
\hline Honore Mercier \& \({ }_{6} 6\) \& \({ }_{219}^{219}\) \& No \& \(\stackrel{\text { LPC }}{\text { LPC }}\) \& \({ }_{7183}\) \& \({ }_{\text {BC }}\) \& \({ }_{2180}^{25}\) \& CPC \& \({ }_{1274}^{127}\) \& \(\underset{\sim}{\text { NDP }}\) \& 835 \& Other \& \(\bigcirc\) \& \({ }_{11472}\) \& \({ }_{\text {LPC }}\) \& \({ }^{48809}\) \\
\hline \({ }^{\text {Houlict Alt }}\) \& \({ }_{10}^{31}\) \& \({ }_{272}^{273}\) \& No \& \({ }_{\text {LPC }}^{\text {LPC }}\) \& \({ }_{\substack{2666 \\ 512}}\) \& \({ }_{\text {cie }}^{\text {BQ }}\) \& \& \({ }_{\text {cpe }}\) \& － \& Cther \& \({ }_{17} 17\) \& Other \& \({ }_{0}^{0}\) \& \({ }^{4956}\) \& \({ }_{\text {BC }}\) \& \({ }_{\substack{51249 \\ \text { 51098 }}}^{50}\) \\
\hline Joneutire \& \({ }_{190}^{49}\) \& \({ }_{223}^{272}\) \& No \& \({ }_{\text {BQ }}^{\text {BQ }}\) \& \({ }_{\substack{\text { 5457 } \\ 1658}}\) \& \({ }_{\text {CPC }}^{\text {LPC }}\) \& \({ }_{\substack{2586 \\ 1189}}^{\text {20，}}\) \& \(\underset{\text { cpC }}{\text { LPC }}\) \& \({ }_{\text {8272 }}^{965}\) \& NDP \& \& \(\underset{\substack{\text { Other } \\ \text { Other }}}{\text { Oter }}\) \& － \& \({ }_{3959}^{9526}\) \& \({ }_{\text {BQ }}^{\text {BQ }}\) \& \({ }_{\substack{56198 \\ 4574}}^{\text {ati }}\) \\
\hline \& \({ }_{2}^{12}\) \& \({ }^{150} \times 28\) \& No \& \& \({ }^{623}\) \& \({ }_{\text {CPC }}^{\text {cre }}\) \& \({ }_{91}^{177}\) \& \({ }_{\text {cer }}^{\text {cec }}\) \& \({ }_{5}^{171}\) \& \({ }_{\substack{\text { PpC } \\ \text { GPC }}}\) \& 27
10 \& \(\underset{\substack{\text { Other } \\ \text { Other }}}{\text { Oter }}\) \& ！ \& \({ }_{\text {cher }}^{\text {2988 }}\) \& \({ }_{\text {ctic }}^{\text {LPC }}\) \& \({ }_{\substack{26083 \\ 49565}}^{20}\) \\
\hline Kitchener centre \& 3 \& 216
216 \& No \& \({ }_{\substack{\text { GPC } \\ \text { GPC }}}^{\text {cem }}\) \& \({ }_{\substack{289 \\ 7726}}^{29}\) \& \({ }_{\text {CPC }}^{\text {NDP }}\) \& 179
5811 \& \({ }_{\text {NDP }}^{\text {LpC }}\) \& \({ }_{\substack{157 \\ 4309}}\) \& \({ }_{\substack{\text { crec } \\ \text { LPC }}}^{\text {cec }}\) \& \({ }_{4128}^{157}\) \& \({ }_{\text {Other }}^{\text {Other }}\) Other \& \％ \& cis82 \& \({ }_{\text {GPC }}^{\text {GPC }}\) \& cille 51179 \\
\hline \& 182
1
1 \& 262
88 \& \({ }_{\text {No }}^{\text {No }}\) \& \({ }_{\text {LPC }}^{\text {BPC }}\) \& \({ }_{24}^{12267}\) \& \& \(\stackrel{9160}{6}\) \& \({ }_{\text {cter }}^{\substack{\text { NDP } \\ \text { CPC }}}\) \& \({ }_{5}^{2729}\) \& \({ }_{\text {cpec }}^{\text {Pre }}\) \& \begin{tabular}{|c}
1893 \\
1 \\
1
\end{tabular} \& Other \& \％ \& \({ }_{\substack{26049 \\ 36}}\) \& \({ }_{\text {LPC }}^{\text {LPC }}\) \& ¢ \\
\hline \& 45
1 \& － \& \({ }_{\text {No }}^{\text {No }}\) \& \({ }_{\text {cip }}^{\text {LpC }}\) \& 1851
43 \& \({ }_{\substack{\text { cre } \\ \text { LPC }}}^{\text {ced }}\) \& 1231
32 \& \({ }_{\text {cter }}^{\text {NDP }}\) \& \(\stackrel{939}{7}\) \& \({ }_{\substack{\text { PpC } \\ \text { NDP }}}\) \& \(\stackrel{117}{17}\) \& Other \& \({ }^{\circ}\) \& \({ }_{82}^{4138}\) \& \({ }_{\text {LPC }}^{\text {LPC }}\) \& \({ }_{\text {cose }}^{9653}\) \\
\hline Lac sain jean
Lac saint louis \& 50
4
4 \& \& No \& \& \& \(\underset{\substack{\text { CPC } \\ \text { CPC }}}{ }\) \& \& \& 991
1122 \& \(\underset{\substack{\text { NDP } \\ \text { BR }}}{ }\) \& 1688
428
428 \& Other \& \({ }_{0}^{\circ}\) \& 4747
6832 \& \(\underbrace{\substack{\mathrm{BC} \\ \text { LPC }}}_{\text {cre }}\) \& \({ }_{\substack{50197 \\ 57725}}\) \\
\hline Lasale emard verdun \& \({ }_{5}^{85}\) \& 209
296 \& \({ }_{\text {No }}\) \& \({ }_{\text {cip }}^{\text {LpC }}\) \& \& \({ }_{\text {che }}^{\text {BPC }}\) \& \({ }_{879}^{3334}\) \& \({ }_{\text {CPP }}^{\text {NDP }}\) \& \({ }_{\substack{2795 \\ 278}}\) \& \({ }_{\substack{\text { cpe } \\ \text { NDP }}}\) \& \({ }_{135}^{1217}\) \& \(\underset{\text { Other }}{\text { Other }}\) \& \({ }_{0}\) \& \({ }_{2332}^{1397}\) \& \({ }_{\substack{\text { LpC } \\ \text { BQ }}}\) \& \({ }_{64123}^{47360}\) \\
\hline （tate \& \(\underset{\substack{267 \\ 35}}{\substack{5 \\ \hline}}\) \& \& \(\xrightarrow{\text { No }}\) No \& cick \& （1240 \begin{tabular}{c}
12735 \\
2293 \\
\hline 20
\end{tabular} \& （tac \& \& （cre \& \& \& （ \(\begin{aligned} \& \text { 325 } \\ \& \text { 325 } \\ \& \text { 225 }\end{aligned}\) \& \& － \& \& \& \begin{tabular}{l}
cinter \\
\hline 41423 \\
44676
\end{tabular} \\
\hline Laurier saintematie \& \({ }_{43}\) \& \({ }_{178}^{178}\) \& No \& \(\underset{\substack{\text { LpC }}}{\text { Lpec }}\) \& \({ }_{279}^{279}\) \& NDP \& 2515 \& \({ }_{\text {co }}^{\text {Ba }}\) \& \({ }_{1488}\) \& \({ }_{\substack{\text { cpe } \\ \text { cpe }}}\) \& \({ }_{271}^{275}\) \& Other \& \％ \& 7053 \& \(\underset{\substack{\text { LPC } \\ \text { LPC }}}{\text { Led }}\) \& \\
\hline Levis Lotbinirre \& \({ }_{24}^{24}\) \& \({ }_{2}^{298}\) \& No \& \({ }_{\text {cra }}\) \& \({ }_{25708}^{250}\) \& \({ }_{\text {BQ }}^{\text {BQ }}\) \& \({ }_{\text {1 }}^{1089}\) \& \({ }_{\text {LPC }}^{\text {LPC }}\) \& \({ }_{7288}^{7248}\) \& NDP \& 3529 \& Other \& \(\bigcirc\) \& \({ }_{47404}^{1709}\) \& \({ }_{\text {CPC }}\) \& \({ }_{\text {coser }}^{60397}\) \\
\hline Long mance mountains \& \({ }_{1}^{200}\) \& \({ }_{265}^{240}\) \& No \& \({ }_{\substack{\text { crec }}}^{\text {Nop }}\) \& \({ }_{\substack{13374 \\ 55}}\) \& \({ }_{\text {LPC }}^{\text {LPC }}\) \& \({ }_{29}^{7412}\) \& \({ }_{\text {cpec }}^{\text {PpC }}\) \& \({ }_{2}^{7266}\) \& \({ }_{\substack{\text { PpC } \\ \text { NDP }}}\) \& \({ }_{\text {2786 }}\) \& Other \& \({ }_{\circ}^{\circ}\) \& \& \({ }_{\text {LPP }}^{\text {NDP }}\) \& \(\underbrace{\text { 1422 }}_{\substack{\text { che } \\ 364247}}\) \\
\hline Long range mountals
Long rance mountains \& \({ }_{10}^{4}\) \& 265
265 \& No \& \& 149
252 \& \({ }_{\text {cpe }}^{\text {LpC }}\) \& －\({ }_{241}^{111}\) \& NDP \& \({ }_{41}^{8}\) \& \({ }_{\substack{\text { PpC } \\ \text { PPC }}}\) \& \({ }_{25}^{8}\) \& Other \& \({ }_{0}^{0}\) \& \(\underset{\substack{276 \\ 559}}{ }\) \& \({ }_{\text {LpC }}^{\text {LpC }}\) \& \({ }_{\substack{36447 \\ 3647}}^{3}\) \\
\hline Long range mountains
Long rance mouncins \& ¢ 210 \& \({ }^{265}\) \& No \& \({ }_{\substack{\text { LPCC }}}^{\text {LPC }}\) \& 3354
11090 \& \({ }_{\text {crec }}^{\text {cpC }}\) \& \({ }_{\substack{3231 \\ 929}}\) \& \(\underbrace{}_{\substack{\text { NDP } \\ \text { NDP }}}\) \& \& \({ }_{\substack{\text { PpC } \\ \text { PPC }}}^{\text {ce }}\) \& \begin{tabular}{l}
365 \\
1195 \\
\hline
\end{tabular} \& \({ }_{\text {Other }}^{\text {Other }}\) Other \& \％ \& 7826
25089 \& \({ }_{\text {LPC }}^{\text {LpC }}\) \& \(\substack{36447 \\ 3647}^{3}\) \\
\hline \({ }_{\text {Longubul }}^{\text {Lema Charles }}\) \& 165 \& \({ }_{230}\) \& No \& \({ }_{\text {Lpc }}\) \& 8825 \& \({ }^{\text {Bq }}\) \& 7425 \& nDP \& 2854 \& cpe \& 1913 \& Other \& － \& \({ }^{21017}\) \& \({ }_{\text {LpC }}\) \& \({ }^{47970}\) \\
\hline Longueuli saint hubert \& \({ }_{2}^{35}\) \& \({ }_{233}^{233}\) \& No \& \(\underset{\substack{\text { LPC } \\ \text { LPC }}}{\text { ces }}\) \& 136
1653 \& \({ }_{8 \mathrm{BQ}}^{\mathrm{BQ}}\) \& 120
1646 \& \({ }_{\text {NDP }}^{\text {NDP }}\) \& \({ }_{358}^{22}\) \& \(\mathrm{CrPC}_{\mathrm{CPC}}^{\text {CPC }}\) \& \({ }_{264}^{10}\) \& \(\underset{\substack{\text { Other } \\ \text { Other }}}{\text { Ote }}\) \& \({ }_{0}\) \& \& \({ }_{8 Q}^{\text {BQ }}\) \& \({ }_{\substack{57235 \\ 57235}}\) \\
\hline \& 25
47
87 \& 233
233
233 \& No \& （tac \& \& \& \& ¢ \& \& crec \& \& （tater \& － \& \& \& \\
\hline Lent \& \(\substack{85 \\ 95 \\ 185}\) \& 233
233
233 \& No \& \(\underset{\substack{\text { Lipc } \\ \text { LPC }}}{\text { LPC }}\) \& \& \& （ \& （inder \& \& crec \& \& Other \& ： \& \& \& \\
\hline LOnGuEUL SAINT HUERET \& \({ }_{136}^{185}\) \& \({ }_{255}^{233}\) \& No \& \({ }_{\text {CPC }}^{\text {LPC }}\) \& \({ }_{\substack{132251 \\ 1225}}^{\text {a }}\) \& \({ }_{\text {BQ }}^{\text {BQ }}\) \& 边 \begin{tabular}{l}
12901 \\
4709 \\
\hline
\end{tabular} \& \& \({ }_{\substack{3065 \\ 4200}}\) \& \({ }_{\text {cter }}^{\text {NDP }}\) \& \({ }_{1563}^{2317}\) \& Other \& － \& \({ }_{\substack{31536 \\ 22683}}\) \& \({ }_{\text {cre }}^{\text {BQ }}\) \& \\
\hline MADAWASKA RESTIGOUCHE \& \({ }_{1}^{40}\) \& \({ }_{90}^{144}\) \& No \& \({ }_{\text {LPC }}^{\text {LPC }}\) \& \({ }_{313}^{2479}\) \& \({ }_{\text {CPC }}^{\text {CPC }}\) \& \({ }^{1343}\) \& \& \({ }_{81}^{462}\) \& \({ }_{\substack{\text { PpC } \\ \text { NDP }}}\) \& \({ }_{47}^{393}\) \& Other \& \({ }_{0}^{0}\) \& \({ }_{\substack{4677 \\ 650}}^{\text {60，}}\) \& \({ }_{\text {LPC }}^{\text {LPC }}\) \& \({ }_{\substack{30546 \\ 23707}}\) \\
\hline \(\underset{\text { Manlcouacan }}{\text { MEGANTIC Lemable }}\) \& \({ }_{2}^{245}\) \& \({ }_{243}^{261}\) \& No \& （icc \& \({ }_{\substack{15127 \\ 874}}\) \& \& ¢ \(\begin{gathered}633 \\ 319\end{gathered}\) \& \({ }_{\text {LPCC }}^{\text {LPC }}\) \& \({ }_{255}^{5563}\) \& \({ }_{\text {NDP }}^{\text {NPP }}\) \& 1379

25 \& Other \& \％ \& ${ }_{\substack{28401 \\ 1463}}^{\text {d }}$ \& ${ }_{\text {cre }}^{\text {cPC }}$ \& ${ }_{\substack{3500 \\ 46428}}$

\hline MEGANTIC Litreable \& 30
120
120 \& \& ${ }_{\text {No }}^{\text {No }}$ \& \& 5294
10081
108 \& ${ }_{\text {che }}^{\text {BR }}$ \& （1953 \& $\underset{\substack{\text { LpC }}}{\text { cpe }}$ \& 1353
2856 \& ${ }_{\substack{\text { PpC } \\ \text { NDP }}}$ \& ${ }_{2239}^{206}$ \& $\xrightarrow{\text { Other }}$ Other \& \％ \& ${ }_{2806}^{20673}$ \& ${ }_{\substack{\text { cpC } \\ \text { BR }}}$ \& ${ }_{\substack{46428 \\ 6312}}$

\hline Miramichi grand lake \& ${ }_{25}^{3}$ \& | 1588 |
| :---: |
| 158 |
| 1 | \& ${ }_{\text {No }}^{\text {No }}$ \& ${ }_{\substack{\text { crec } \\ \text { CPC }}}^{\text {Lec }}$ \& 206

1611 \& ${ }_{\substack{\text { cpe } \\ \text { LPC }}}^{\text {ced }}$ \& 168
1439 \& ${ }_{\text {NDP }}^{\text {NDP }}$ \& ${ }_{3}^{53}$ \& ${ }_{\substack{\text { PpC } \\ \text { PPC }}}$ \& － 286 \& Other \& ${ }_{0}$ \& 455
3701
3 \& ${ }_{\text {crec }}^{\text {cre }}$ \& ${ }_{32503}^{32503}$

\hline MONCTON RIVEPREVIEW \& ${ }_{25}$ \& 187 \& No \& ${ }_{\text {LPC }}$ \& 2790 \& CPC \& 1304 \& NDP \& 914 \& ppc \& 329 \& Other \& 0 \& ${ }_{5337}$ \& ${ }_{\text {Lpc }}$ \& ${ }_{45762}$

\hline montarvile \& ${ }_{20}^{1}$ \& 216
216 \& No \& ${ }_{\substack{\text { LPCC } \\ \text { LPC }}}^{\text {ceic }}$ \& \％ $\begin{gathered}82 \\ 1226\end{gathered}$ \& ${ }_{\substack{\mathrm{BQ} \\ \mathrm{BQ}}}$ \& 72
1196 \& ${ }_{\text {N }}^{\text {NDP }}$ \& ${ }_{393}^{40}$ \& ${ }_{\text {crec }}^{\text {CPC }}$ \& －${ }_{292}^{13}$ \& Other \& － \& ${ }_{3107}^{207}$ \& ${ }_{\text {cig }}^{\text {BQ }}$ \& ${ }_{\substack{57472 \\ 57472}}^{\text {che }}$

\hline montarylle \& ${ }^{74} 165$ \& ${ }_{216}^{216}$ \& No \& ${ }_{\substack{\text { BQ } \\ \text { BQ }}}$ \& \& ${ }_{\text {LPC }}^{\text {LpC }}$ \& \& ${ }_{\text {cre }}^{\text {NDP }}$ \& （1453 \& $\underbrace{}_{\substack{\text { cpe } \\ \text { NDP }}}$ \& （1251 \& ${ }_{\text {Other }}^{\text {Other }}$ Other \& ： \& 12853
34303 \& ${ }_{80}^{\mathrm{BQ}}$ \& ${ }_{\substack{57472 \\ 57472}}$

\hline $\underset{\text { Montcalm }}{\text { Montmacny Lislet }}$ \& \& 236 \& No \& ${ }^{\text {BQ }}$ \& 20198 \& ${ }_{\text {LpC }}$ \& 7308 \& CPC \& 4291 \& NDP \& 2284 \& Other \& 。 \& 34081 \& ${ }^{\text {BQ }}$ \& 51452

\hline MONTMAOUP \& 1 \& 271 \& No \& LPC \& 7 \& CPC \& 7 \& ${ }^{\text {BQ }}$ \& 2 \& NDP \& 0 \& Other \& \& 16 \& CPC \& 47812

\hline Kamouraska miviere du \& 10 \& 271 \& No \& CPC \& ${ }^{377}$ \& LpC \& 188 \& ${ }^{\text {BQ }}$ \& ${ }^{142}$ \& Other \& ${ }^{27}$ \& Other \& 0 \& \& cpi \& 47812

\hline MONTMAGNY L＇ISLET
KAMOURASKA RIVIERE DU LOUP \& 108 \& 271 \& No \& ${ }_{\text {cPC }}$ \& 8775 \& ${ }^{\text {Bq }}$ \& 4140 \& ${ }_{\text {LpC }}$ \& 2786 \& NDP \& 507 \& Other \& 0 \& 16208 \& ${ }_{\text {cPa }}$ \& 47812

\hline ${ }^{\text {NEW BRUNSWICK }}$ \& ${ }^{30}$ \& ${ }^{176}$ \& No \& ${ }^{\text {cPC }}$ \& ${ }^{2211}$ \& LpC \& ${ }^{885}$ \& NDP \& ${ }^{587}$ \& ${ }^{\text {PPC }}$ \& ${ }^{437}$ \& Other \& 0 \& ${ }^{4120}$ \& ${ }^{\text {cPC }}$ \& ${ }^{36629}$

\hline \& 32 \& ${ }^{214}$ \& No \& ．pC \& 2439 \& NDP \& soo \& cpc \& 675 \& GPC \& 214 \& Other \& 0 \& ${ }^{4128}$ \& Lpc \& 45591

\hline
\end{tabular}

Constituency	Boxes Counted	Total Boxes	RDI Elected	First	First Count	Second	Second Count	Third	Third Count	Fourth	Fourth Count	Fifth	Fifth Count	Total Votes	End Winner	End Total Votes
$\underset{\substack{\text { ORLEANS } \\ \text { PAPINEAU }}}{ }$	30 18	${ }_{\substack{238 \\ 212}}$	$\stackrel{\text { No }}{\text { No }}$	$\underset{\substack{\text { LPC } \\ \text { LpC }}}{\text { ces }}$	${ }_{\substack{2718 \\ 115}}$	$\underset{\substack{\text { cpe } \\ \text { NDP }}}{\text { der }}$	${ }^{1667}$	$\underset{\substack{\text { NDP } \\ \text { BQ }}}{\text { den }}$	${ }^{944}$	${ }_{\substack{\text { PpC } \\ \text { CPC }}}^{\text {cec }}$	${ }^{174}$	$\xrightarrow{\text { Other }}$ Other	${ }_{0}^{\circ}$	5503	$\underset{\substack{\text { LPC } \\ \text { LPC }}}{\text { ced }}$	${ }_{\substack{754283}}^{752}$
$\underset{\substack{\text { patineau } \\ \text { Papineau }}}{\text { and }}$	18 28	${ }_{212}^{212}$	No	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{910}^{115}$	${ }_{\text {NDP }}^{\text {NDP }}$	${ }_{427}^{47}$	${ }_{\text {BQ }}^{\text {BQ }}$	${ }_{234}^{26}$	${ }_{\text {crec }}^{\text {CPC }}$	${ }_{106}^{11}$	Other	${ }_{0}^{0}$	${ }_{1}^{1997}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{45423}^{45423}$
Pierre boucher les	175	239	No	${ }_{\text {BQ }}$	14367	${ }_{\text {LPC }}$	6808	NDP	2493	${ }_{\text {cPa }}$	2445	Other	。	26113	вQ	${ }_{55246}$
$\mathrm{Cl}_{\text {Qubbec }}^{\text {des }}$	30 185 185	${ }_{241}^{241}$	No	${ }^{\text {LpC }}$	1356 1 1 1385	$\stackrel{\text { BQ }}{\text { BPC }}$	1045	${ }_{\text {cpe }}^{\text {cpe }}$	${ }^{825}$	${ }_{\text {nvp }}$	${ }^{709}$	Other	\bigcirc	3935 3920	${ }^{\text {LpC }}$	${ }_{5}^{5191}$
	185 170	2790	No	${ }_{\substack{\text { BPC } \\ \text { CPC }}}^{\text {ce }}$	${ }_{\substack{19380 \\ 12974}}$	$\underset{\text { LpC }}{\substack{\text { LPC }}}$	${ }_{\substack{10354 \\ 6465}}$	$\underset{\substack{\text { CPC } \\ \text { LPC }}}{\text { ceid }}$	${ }_{3}^{3357}$	${ }_{\text {NDP }}^{\text {NDP }}$	（1018	${ }_{\text {Other }}^{\text {Other }}$	$\stackrel{0}{\circ}$	${ }_{\substack{36299 \\ 2497}}^{\text {a }}$	${ }_{\substack{\text { BQ } \\ \text { CPC }}}$	59701 5759
RIMOUSKI NEICETTE	184	249	No	Bq	17148	${ }_{\text {Lpc }}$	8255	cpa	${ }_{423}$	NDP	2297	Other	－	${ }^{32123}$	вQ	${ }_{42138}$
	${ }_{35}^{196}$	235 234	No	${ }_{\text {BQ }}^{\text {BQ }}$	${ }_{\substack{11382 \\ 2216}}^{\text {che }}$	${ }_{\substack{\text { LPC } \\ \text { LPC }}}^{\text {cec }}$		$\underset{\substack{\mathrm{CPC} \\ \mathrm{CPC}}}{ }$	3060		${ }_{\substack{2623 \\ 375}}$	$\underset{\substack{\text { Other } \\ \text { Other }}}{\text { Oter }}$	：	${ }_{\substack{27311 \\ 4066}}^{\text {che }}$	${ }_{\text {BQ }}^{\text {BQ }}$	${ }_{\substack{53366 \\ 57329}}$
Rosemont la petite	1	${ }_{234}^{234}$	No	${ }_{\text {NDP }}$	${ }_{178}^{2216}$	Lpc	1426 190	${ }_{\text {BQ }}$	${ }_{128}$	CPC	${ }_{12}$	${ }_{\text {Other }}$	${ }_{0}$	${ }_{458}$	${ }_{\text {NDP }}$	${ }_{549888}$
Rosemont pa petite	35	234	No	N	2778	Ipc	1550		119	cp						
patrie		234		NDP	2778	LpC	${ }^{1550}$	${ }^{\text {Bq }}$	${ }^{1194}$		${ }^{235}$	Other	\bigcirc	5757	NDP	${ }^{54988}$
Rosemont pata petite	${ }^{218}$	${ }^{234}$	No	${ }_{\text {NDP }}$	${ }_{21144}$	${ }_{\text {Lpc }}$	10105	BQ	${ }^{8973}$	${ }_{\text {cpe }}$	1801	Other	0	${ }_{42023}$	ndp	54988
Stiol	${ }^{75}$	236 236	${ }_{\text {No }}$	$\underset{\text { GPC }}{\substack{\text { GPC }}}$	${ }_{\substack{524 \\ 4457}}^{\substack{\text { S }}}$	${ }_{\text {cpe }}^{\text {cpC }}$	$\underset{\substack{271 \\ 2399}}{ }$	$\underset{\substack{\text { NDP } \\ \text { NDP }}}{ }$	${ }_{2}^{214}$	$\underset{\text { LPC }}{\text { LPC }}$	${ }_{\substack{196 \\ 1984}}$	$\underset{\text { Other }}{\text { Other }}$	：	$\substack{1205 \\ 11009}$	$\underset{\text { GPC }}{\text { GPC }}$	${ }_{\substack{655522 \\ 65522}}$
SACKVILLE PREETON	1	${ }_{1} 98$	No	${ }_{\text {LPC }}$	15	cra	10	NDP	2	ppc	\％	Other	。	${ }_{37}$	${ }_{\text {LPC }}$	${ }_{45606}^{652}$
SACkVILIE PRESTON	${ }^{135}$	198	No	${ }_{\text {LPc }}$	8143	NDP	6121	${ }_{\text {cPa }}$	5213	${ }_{\text {pPC }}$	904	Other	。	20381	${ }_{\text {LPC }}$	45606
saint hyacinthe bagot	${ }^{213}$	${ }^{256}$	No	BQ	${ }^{21200}$	${ }^{\text {LpC }}$	9795	${ }^{\text {cpC }}$	${ }_{6038}$	ndp	5104	Other	\bigcirc	${ }_{42137}$	${ }^{\text {BQ }}$	${ }_{53031}$
Saint johin rothenay	$\stackrel{221}{1}$	${ }_{163}^{258}$	No	$\underset{\substack{\text { BPC } \\ \text { LPC }}}{\text { ce }}$	${ }_{\substack{14834 \\ 124}}$	${ }_{\text {CPC }}^{\text {Lp }}$	${ }_{90}^{9166}$	$\underbrace{\substack{\text { cpe }}}_{\text {cpe }}$	${ }_{43}^{4129}$	${ }_{\text {GPC }}^{\text {NDP }}$	（3014 ${ }_{5}$	Other	${ }_{0}^{0}$	${ }_{242}^{31143}$	${ }_{\text {LPC }}^{\text {BQ }}$	$\underbrace{\text { chen }}_{\substack{59210 \\ 37450}}$
SAINT Leonard michel saint	1	201	No	${ }_{\text {LpC }}$	312	${ }^{\text {Bq }}$	${ }_{40}$	ndp	35	cpa	${ }^{24}$	Other	－	${ }^{41}$	${ }_{\text {LpC }}$	${ }_{1814}$
Sant mavrice champlain	${ }_{2}^{1}$	${ }_{291}^{291}$	${ }_{\text {No }}$	${ }_{\text {LPC }}^{\text {LPC }}$	86	${ }_{\text {BQ }}^{\text {BQ }}$	${ }_{41}^{20}$	$\mathrm{coc}_{\text {CPC }}^{\text {CPC }}$	${ }_{20}^{8}$	${ }_{\text {NDP }}^{\text {NDP }}$	${ }_{4}^{3}$	${ }_{\text {Other }}^{\text {Other }}$ Other	${ }_{0}$	117 172	${ }_{\text {LPC }}^{\text {LPC }}$	$\substack{56337 \\ 5637}_{\text {cen }}$
${ }_{\text {Salaberry Surot }}^{\text {SHEFPORD }}$	${ }_{26}^{266}$	302 206	No	${ }_{\text {BO }}^{\text {BO }}$	${ }_{12010}^{26010}$	${ }_{\substack{\text { LpC } \\ \text { LPC }}}^{\text {ced }}$	${ }_{1}^{14805}$	${ }_{\text {CPC }}^{\text {CPC }}$	${ }_{\text {6739 }}{ }_{3}$	NDP	－${ }_{32} 399$	$\xrightarrow{\text { Other }}$ Other	\％	51593	${ }_{\text {BQ }}^{\text {BR }}$	
	${ }^{205}$	${ }_{\text {cke }}^{295}$	No		${ }_{1}^{16151}$	${ }_{\text {LpC }}^{\text {LpC }}$	${ }^{12574}$	$\mathrm{crac}_{\mathrm{CPC}}^{\text {cre }}$	4648	Nop	${ }^{2160}$	Other	\bigcirc	${ }_{\substack{35533 \\ 685}}$	${ }_{\text {BQ }}^{\text {BQ }}$	cosisise
	${ }_{75}^{15}$	${ }_{251}^{221}$	No	${ }_{\text {LPC }}^{\text {LPC }}$	${ }^{3377}$	${ }_{\text {BQ }}^{\text {BQ }}$	${ }_{2488}^{19}$	${ }_{\text {cpe }}^{\text {cpe }}$	${ }_{1455}$	${ }_{\text {CPC }}$	${ }_{1151}$	$\xrightarrow{\text { Other }}$ Other	${ }_{0}^{0}$	${ }_{8501}^{66}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{\substack{58185 \\ 58185}}$
SOUTH SHore st MARGARETS	5	270	No	${ }_{\text {Lpc }}$	${ }^{223}$	cpi	201	ndp	${ }^{135}$	GPC	19	Other	。	578	${ }^{\text {cpe }}$	50004
South shore st．	${ }^{20}$	270	No	${ }_{\text {cPC }}$	999	${ }_{\text {LPC }}$	${ }^{226}$	ndp	473	$\mathrm{GPC}^{\text {a }}$	84	Other	－	2382	${ }_{\text {cPa }}$	50004
South shore st．	25	270	No	${ }_{\text {cPC }}$	${ }^{1222}$	${ }_{\text {LPC }}$	994	ndp	594	$\mathrm{GPC}^{\text {a }}$	107	Other	－	2917	${ }_{\text {cPa }}$	50004
South shore st． MARGARETS	${ }^{40}$	270	No	cra	${ }^{2130}$	${ }_{\text {LpC }}$	1651	ndp	${ }^{934}$	${ }_{\text {GPC }}$	${ }^{174}$	Other	－	4889	${ }_{\text {cPa }}$	50004
South shore st．	165	${ }^{270}$	No	cra	9702	${ }_{\text {LPC }}$	${ }^{7926}$	ndp	4588	$\mathrm{g}_{\text {P\％}}$	${ }^{71}$	Other	0	22287	${ }_{\text {cPa }}$	50004
St．Johns East	1	${ }^{182}$	No	${ }^{\text {LpC }}$	${ }^{131}$	nDp	${ }^{122}$	${ }^{\text {cpC }}$	${ }^{78}$	${ }_{\text {PpC }}$	2	Other	\bigcirc	${ }^{333}$	${ }^{\text {LpC }}$	${ }^{38171}$
ST．Johns East	5	182 182	${ }_{\text {No }}^{\text {No }}$	${ }_{\substack{\text { NDP } \\ \text { NDP }}}^{\text {N }}$	${ }_{317}^{165}$	${ }_{\text {LPC }}^{\text {LpC }}$	$\underset{\substack{147 \\ 236}}{ }$	${ }_{\text {crec }}^{\text {CPC }}$	${ }_{135}^{92}$	${ }_{\substack{\text { PpC } \\ \text { PPC }}}$	${ }_{17}^{8}$	${ }_{\text {Other }}^{\text {Other }}$ Other	\％	${ }_{705}^{412}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{\substack{38171 \\ 38171}}^{\text {20，}}$
ST．Johns East	${ }_{20}^{10}$	182 182 182	${ }_{\text {No }}^{\text {No }}$	${ }_{\text {NDP }}$	522 1131 1	${ }_{\text {LPC }}^{\text {LpC }}$	$\underset{\substack{455 \\ 958}}{\substack{\text { a }}}$	${ }_{\text {cpe }}^{\text {CPC }}$	${ }_{\substack{325 \\ 536}}$	${ }_{\substack{\text { PpC } \\ \text { PPC }}}$	${ }_{59}^{39}$	$\xrightarrow{\text { Other }}$ Other	${ }_{0}$	${ }_{2684}^{1381}$	${ }_{\text {LPC }}^{\text {LpC }}$	${ }_{\substack{38171 \\ 38171}}$
ST．Johns East	${ }_{65}^{40}$	182 182 182	No		（2255	${ }_{\substack{\text { LpC } \\ \text { NDP }}}^{\text {cen }}$	2119 3514	${ }_{\text {cre }}^{\text {cre }}$	1133 1860	${ }_{\substack{\text { PpC } \\ \text { PPC }}}$	${ }_{211}^{137}$	${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}^{0}$		${ }_{\text {LPC }}^{\text {LpC }}$	${ }_{\substack{38171 \\ 38171}}$
ST．Johns East	－115	$\underset{\substack{182 \\ 182}}{\substack{182}}$	No	$\stackrel{\text { Lpc }}{\text { LpC }}$	7052	Nsp		$\xrightarrow{\text { cpC }}$		${ }_{\substack{\text { PpC } \\ \text { PPC }}}$	（	Other	\bigcirc	${ }_{1}^{17296}$	${ }_{\text {LpC }}^{\text {Lpe }}$	$\substack{38171 \\ \text { 3s171 }}_{\substack{381}}$
ST John＇s East	${ }_{175}^{175}$	182	No	${ }_{\text {LPC }}$	${ }_{14411}$	NDP	11469	CPC	${ }_{6} 6453$	PPC	${ }_{671}$	Other	\bigcirc	${ }_{3304}^{2064}$	${ }_{\text {LPC }}$	${ }_{38171}$
ST．John smout mount	1	207	No	${ }^{\text {LPC }}$	2	${ }_{\text {cpa }}$	2	ndp	${ }^{2}$	${ }^{\text {PpC }}$	0	Other	－	${ }^{6}$	LpC	${ }^{34676}$
S SOUT PEARL	${ }^{25}$	${ }^{207}$	No	${ }^{\text {LpC }}$	1541	NDP	${ }^{742}$	cPC	${ }^{486}$	${ }^{\text {PPC }}$	${ }^{64}$	Other	\bigcirc	${ }^{2833}$	${ }^{\text {Lpp }}$	${ }^{34676}$
SYPNE VICHORIA	－${ }_{30}$	$\substack{205 \\ 205}$	${ }_{\text {No }}^{\text {No }}$	coce	${ }_{\substack{99 \\ 1618}}^{\substack{\text { and }}}$	$\underset{\substack{\text { LPC } \\ \text { LPC }}}{\text { cric }}$		${ }_{\text {N }}^{\text {NDP }}$	${ }_{721}^{16}$	${ }_{\substack{\text { PpC } \\ \text { PPC }}}$	${ }_{1}^{68}$	${ }_{\text {Other }}^{\text {Other }}$	：	${ }_{1}^{152}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{\substack{36312 \\ 36312}}$
$\underset{\text { SYDNEY VICTORIA }}{\text { SERREBONNE }}$	${ }_{153}^{116}$	${ }_{207}^{205}$	${ }_{\text {No }}$	${ }_{\text {cip }}^{\text {LpC }}$	6364 12700	${ }_{\substack{\text { cpC } \\ \text { LPC }}}^{\text {cen }}$	5815 10024	${ }_{\text {CPP }}^{\text {NDP }}$	－ $\begin{gathered}3370 \\ 3250\end{gathered}$	${ }_{\substack{\text { PpC } \\ \text { NDP }}}$		Other	${ }_{0}$	${ }_{28459}^{16103}$	${ }_{\text {LpC }}^{\text {LPC }}$	
TIMMINS JAMES BAY Tobleue mactaquac	1488 20	176 178 178	${ }_{\text {No }}$	$\underset{\substack{\text { NPP } \\ \text { CPC }}}{\text { N }}$		${ }_{\substack{\text { CPC } \\ \text { LPC }}}^{\text {ced }}$	${ }_{\substack{7183 \\ 945}}^{10}$	（ipc	$\substack{5955 \\ 367}^{30}$	${ }_{\substack{\text { PpC } \\ \text { PPC }}}$		$\xrightarrow{\text { Other }}$ Other	${ }_{0}^{0}$		${ }_{\substack{\text { NDPP } \\ \text { CPC }}}^{\text {cec }}$	${ }_{\substack{34570 \\ 34400}}$
Toronto Centre TORONTO CENTRE	5 15	$\underset{\substack{137 \\ 137}}{138}$	No	$\underset{\substack{\text { LPC } \\ \text { LPC }}}{\text { Leg }}$	（742		289 849 89	$\underset{\substack{\text { CPC } \\ \text { cPa }}}{ }$	$\substack{216 \\ 633}_{\text {20，}}$	${ }_{\substack{\text { GpC } \\ \text { GPC }}}^{\text {ced }}$		$\xrightarrow[\substack{\text { Other } \\ \text { Other }}]{\text { Other }}$	\％		$\underset{\substack{\text { LPC } \\ \text { LPC }}}{\text { cec }}$	${ }_{\substack{458517 \\ 45817}}$
ToRONOO CENTRE TORONTO CENTRE	（	$\underset{\substack{137 \\ 137}}{\substack{137 \\ \hline}}$	No	$\underset{\substack{\text { LPC } \\ \text { LPC }}}{\text { Lic }}$		$\underset{\substack{\text { NDP } \\ \text { NDP }}}{ }$		$\underset{\substack{\text { cpC } \\ \text { CPC }}}{ }$		$\underset{\substack{\text { GpC } \\ \text { GPC }}}{\text { cec }}$	¢ 54.3	$\substack{\text { Other } \\ \text { Other }}$	\％	（6380	${ }_{\substack{\text { LpC } \\ \text { LPC }}}^{\text {Led }}$	${ }_{4}^{458517}$
Trois mivieres	${ }_{5}^{50}$	${ }_{2}^{1245}$	No	${ }_{\substack{\text { LPC } \\ \text { LPC }}}^{\text {Lic }}$	${ }_{\substack{\text { 2147 }}}^{\text {247 }}$	${ }_{\text {B }}$	2099 184 1	${ }_{\text {cpC }}$	${ }^{1596}$	¢	${ }_{58}$	Other	\bigcirc	cios	${ }_{\text {BQ }}$	${ }_{\substack{48817 \\ 5810}}^{\text {4812 }}$
Trois rivirres	${ }_{90}^{90}$	${ }_{245}^{245}$	No	${ }_{\text {cre }}^{\text {LPC }}$		${ }_{\text {cic }}^{\text {cic }}$	14588 3520	${ }_{\text {LPC }}^{\text {LPQ }}$	1443 3472	NDP	－	Other	${ }_{0}^{0}$	${ }^{\text {199955 }}$	${ }_{\text {BQ }}^{\text {BQ }}$	管58110
	cist	${ }_{2}^{245}$	No	（crec	6646 $\substack{6131 \\ 7610}$	${ }^{\text {BQ }}$	6691 7067 7060	$\underset{\substack{\text { LPC } \\ \text { LPC }}}{\text { Lec }}$		Not	${ }_{\substack{2677 \\ 2687}}^{248}$	Other	：		${ }_{\text {coic }}^{\text {BQ }}$	cissino
Trois rivirers	（1880	${ }_{245}^{245}$	No		7610 7782	${ }_{\text {BQ }}^{\text {BQ }}$	${ }_{7}^{7606}$	${ }_{\text {LPC }}^{\text {LpC }}$	${ }_{7}^{73574}$	${ }_{\text {NDP }}^{\text {NDP }}$	${ }_{2924}^{2874}$	${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}^{0}$	${ }_{2}^{25416} \mathbf{2 6 4 2}$	${ }_{\text {BQ }}^{\text {BQ }}$	ciss
Trois rivieres	${ }_{1}^{213}$	${ }_{264}^{245}$	No	${ }_{\substack{\text { cra } \\ \text { LPC }}}^{\text {ce }}$	$\underset{\substack{10196 \\ 51}}{ }$	${ }_{\text {cre }}^{\text {CPC }}$	$\stackrel{10112}{7}$	${ }_{\text {NDP }}^{\text {LpC }}$	9879 ${ }_{3}$	${ }_{\text {NDP }}^{\text {BR }}$	${ }_{3}^{3420}$	${ }_{\text {Ofer }}^{\text {Other }}$ Other	${ }_{0}^{0}$	$\underset{\substack{33607 \\ 62}}{ }$	${ }_{\text {che }}^{\text {BQ }}$	
	120	${ }^{220}$	No	${ }_{\text {LPC }}$	8694	NDP	3368	${ }_{\text {cPa }}$	${ }^{2193}$	${ }^{\text {BQ }}$	2190	Other	0	${ }^{16445}$	LPC	${ }^{49423}$
WEST NoVA WEST NOVA	${ }_{4}^{5}$	${ }_{244}^{244}$	No	${ }_{\substack{\text { crec } \\ \text { cra }}}^{\text {cie }}$		${ }_{\text {LPC }}^{\text {LpC }}$	137 1883	${ }_{\text {NDP }}^{\text {NDP }}$	${ }_{867}^{987}$	${ }_{\substack{\text { PpC } \\ \text { PPC }}}$	${ }_{4}^{39}$	Other Other	：	717 7060	$\mathrm{coc}_{\text {cre }}^{\text {cre }}$	${ }_{4}^{438771}$
WINDSOR WEST	${ }_{161}^{190}$	${ }_{182}^{236}$	No	${ }_{\substack{\text { NDP } \\ \text { NDP }}}^{\text {cen }}$	${ }_{\text {19045 }}^{14400}$	${ }_{\text {LPC }}^{\text {LpC }}$	9269 5606	${ }_{\text {CPC }}^{\text {CPC }}$		${ }_{\text {PPC }}^{\text {PpC }}$	${ }_{826}^{2696}$	${ }_{\text {Other }}^{\text {Other }}$	－	32890	${ }_{\text {NDP }}^{\text {NDP }}$	${ }_{297493}^{4893}$
barrie spring mater oro	${ }_{21}$	${ }_{67}$	No	ив	6575	${ }_{\text {pCP }}$	${ }_{6370}$	npd	1251	gro	${ }_{623}$	Other	－	14819	${ }_{\text {pCP }}$	38862
barrie	${ }_{6} 5$	${ }_{67}$	No	PCP	15950	Lib	15368	NPD	2960	GPo	1637	Other	。	35915	PCP	38862
BEACHES EAST YORK DUFPERIN CALEDON	${ }_{4}^{22}$	${ }_{61}^{41}$	${ }_{\text {No }}^{\text {No }}$	$\underset{\text { PCP }}{\substack{\text { LIB }}}$	${ }_{\substack{68771}}^{986}$	${ }_{\text {GPD }}^{\text {NPD }}$	${ }_{471}^{6472}$	$\underset{\text { LIB }}{\text { PCP }}$	${ }_{306}^{3991}$		${ }_{1239}^{1939}$	Other	${ }_{0}$	${ }_{2015}^{19273}$	${ }_{\text {PCP }}^{\text {LIB }}$	${ }_{450554}^{4029}$
Eticsex	${ }_{3}^{16}$	（	$\xrightarrow{\text { No }}$ No	$\underset{\substack{\text { PCPP } \\ \text { PCP }}}{\text { cer }}$			4656 $\substack{429}$ 329	¢，	$\underset{\substack{12064 \\ 191}}{\substack{\text { 19，}}}$	－		（ther	\％	${ }_{\substack{12387 \\ 1236}}$	${ }_{\substack{\text { PCP } \\ \text { PCP }}}^{\text {cepr }}$	
	${ }_{6}$	${ }_{38}^{38}$	No	${ }_{\text {PCP }}$	${ }_{249}$	${ }_{\text {LIB }}$	${ }_{\substack{3068 \\ 1068 \\ \hline}}$	NPD	${ }_{613}^{191}$	${ }_{\text {GPO }}$	${ }_{132}$	Other	\bigcirc	${ }_{4222}$	${ }_{\text {PCP }}$	${ }^{245880}$
${ }_{\text {c }}^{\text {GLENGARAS Prescot }}$	8	${ }^{99}$	No	${ }^{\text {PCP }}$	3420	${ }^{\text {LIB }}$	${ }^{2861}$	NPD	768	Other	452	Other	－	7501	PCP	${ }^{43573}$
	${ }^{12}$	${ }^{99}$	No	${ }^{\text {PCP }}$	${ }^{4671}$	${ }_{\text {LIB }}$	3954	NPD	${ }^{1028}$	${ }^{\text {Other }}$	587	Other	0	10240	${ }^{\text {PCP }}$	${ }^{43573}$
	82	99	No	PCP	13003	${ }_{\text {Lib }}$	${ }_{11258}$	nPD	2447	Other	1392	Other	\bigcirc	28100	PCP	${ }^{43573}$
${ }_{\text {GUELPH }}^{\text {GUELP }}$	9	${ }_{86}^{86}$	No	${ }_{\text {GPO }}^{\text {GPO }}$	${ }_{3}^{400}$	${ }_{\text {PCP }}^{\text {PCP }}$	${ }_{197}^{97}$	${ }_{\substack{\text { LiB } \\ \text { Lir }}}^{\text {Lic }}$	${ }_{8}^{62}$	${ }_{\text {NPD }}^{\text {NPD }}$	${ }_{540}^{47}$	${ }_{\text {Other }}^{\text {Other }}$	－	${ }_{6026}^{606}$	${ }_{\text {GPO}}^{\text {Gpo }}$	
Haldimand norfolk HAMILTON CENTRE	${ }_{64}^{54}$	${ }_{53}^{62}$	No	$\underset{\substack{\text { Other } \\ \text { NPD }}}{\text { On }}$	${ }_{10}^{19124}$	${ }_{\text {PCP }}^{\text {PCP }}$	${ }_{\substack{12047 \\ 671}}$	$\underset{\text { Npd }}{\text { Nib }}$	${ }_{4}^{5427}$	${ }_{\text {GPO }}^{\text {Lib }}$	${ }_{276}^{2772}$	${ }_{\text {Other }}^{\text {Other }}$	\％	${ }_{\text {33770 }}^{34371}$	${ }_{\text {ND }}^{\text {IND }}$	${ }_{\text {cisker }}^{41785}$
hanron bruce	13 15		No	${ }_{\substack{\text { PCP } \\ \text { PCP }}}^{\text {Pr }}$		${ }_{\text {NPD }}^{\text {NPD }}$	（144	${ }_{\text {LIB }}^{\text {LIB }}$	${ }_{\substack{348 \\ 2927}}$	${ }_{\substack{\text { Other } \\ \text { GPO }}}^{\text {Opo }}$	${ }_{760}^{166}$	Other	${ }_{0}$	${ }_{12417}^{2018}$	${ }_{\text {PCP }}^{\text {PCP }}$	${ }_{4}^{46129}$
KINGSTON ET Les lies	${ }_{23}^{19}$	86	No		（7459	Npp		$\underset{\text { PCP }}{\text { PCP }}$	¢	$\underbrace{\substack{\text { GPO }}}_{\text {GPO }}$		$\xrightarrow{\text { Other }}$ Other	\％	（18045 $\begin{aligned} & 18045 \\ & 2058\end{aligned}$		${ }_{\substack{47947 \\ 4797}}^{489}$
AMbton kent ili mies	${ }_{19}^{29}$	${ }_{77}$	No	${ }_{\text {PCP }}$	${ }_{\substack{\text { 85475 }}}^{857}$	${ }_{\text {NPD }}$	${ }_{\substack{5862 \\ 2723}}$	${ }_{\text {LIB }}^{\text {PCP }}$	${ }_{1310}^{\text {1371 }}$	${ }_{\text {Other }}^{\text {Cobo }}$	${ }_{1096} 1060$	Other	${ }_{0}$	${ }_{\substack{20358 \\ 13138}}$	${ }_{\text {PCP }}$	${ }_{41372}$
$\underset{\substack{\text { thousand islands } \\ \text { RIDEAU Lakes }}}{\text { et }}$	15	${ }_{9}$	No	${ }^{\text {PCP }}$	4539	нів	1834	nPd	1393	Gpo	577	Other	0	8343	PCP	${ }^{41729}$

Constituency	Boxes Counted	Total Boxes	RDI Elected	First	First Count	Second	Second Count	Third	Third Count	Fourth	Fourth Count	Fifth	Fifth Count	Total Votes	End Winner	End Total Votes
London Centre notd	${ }_{3}^{1}$	${ }_{51}^{82}$	${ }_{\text {No }}^{\text {No }}$	$\underset{\substack{\text { PCP } \\ \text { PCP }}}{\text { Prep }}$	${ }_{67}^{10}$	${ }_{\text {LIB }}^{\text {LIB }}$	${ }_{43}$	NPD	${ }_{25}^{5}$	$\underset{\substack{\text { GPo } \\ \text { Other }}}{\text { der }}$	${ }_{7}$	$\substack{\text { Other } \\ \text { Other }}$	${ }_{0}$	${ }_{142}^{25}$		${ }_{\substack{42310 \\ 3247}}^{\substack{\text { a }}}$
	3 19 15	${ }_{\substack{51 \\ 51 \\ 72}}$	No	$\underset{\substack{\text { PCP } \\ \text { PCP }}}{\text { PCP }}$		Lir		NPD	（125		（ ${ }_{\substack{3 \\ 3 \\ 271}}$	$\xrightarrow[\substack{\text { Other } \\ \text { Other } \\ \text { Oher }}]{\text { chea }}$	\％	142 8.105 7191	${ }_{\substack{\text { PCP } \\ \text { PCP } \\ \text { PCP }}}^{\text {Pr }}$	${ }_{\substack{43247 \\ 42247 \\ \text { and }}}^{\text {a }}$
	${ }_{35}^{15}$	57	No	${ }_{\text {LIB }}$	${ }_{\text {17575 }}$	$\stackrel{\text { PCP }}{ }$	${ }_{12159}^{12159}$	$\underset{\substack{\text { NPD } \\ \text { PCP }}}{ }$	${ }_{5} 5122$	${ }_{\text {GPO}}$	1823	Other	\bigcirc	${ }_{36599}$	${ }_{\text {Lib }}$	${ }_{5}^{51213}$
$\underset{\text { OTTTAWA Centren }}{\text { Ottawa }}$	${ }_{44}^{14}$	${ }_{70}^{120}$	No	${ }_{\text {NPD }}^{\text {NPD }}$	${ }_{8563}^{237}$	${ }_{\text {PCP }}^{\text {LIB }}$	${ }_{\text {ckis }}^{195}$	${ }_{\substack{\text { PCP } \\ \text { LIB }}}^{\text {der }}$	${ }_{\substack{125 \\ 5317}}^{\substack{\text { a }}}$	${ }_{\text {GPO }}^{\text {GPO }}$	50 972	${ }_{\text {OTher }}^{\text {Other }}$ Other	：	年37909	NDP	${ }_{\substack{5196 \\ 41814}}^{5129}$
parry otmund mud mikoka	${ }_{96}^{17}$	${ }_{96}^{68}$	No	$\underset{\text { PCP }}{\text { PIB }}$	5758 20216	${ }_{\text {GPD }}^{\text {NPD }}$	3399 18102	$\underbrace{\text { den }}_{\substack{\text { Pcp } \\ \text { NPD }}}$			${ }_{\substack{637 \\ 0}}$	${ }_{\text {Ofer }}^{\text {Other }}$ Other	${ }_{0}^{0}$	¢	${ }_{\text {PCP }}^{\text {LIB }}$	${ }_{4}^{39851}$
（ickering uxbridge	${ }^{17}$		No	PCP	6635	Lib	4448	NPD	2189	GPO	${ }^{721}$	other	0	${ }^{13993}$	PCP	${ }^{42543}$
${ }_{\text {RENFPL }}^{\text {PEMBROKE }}$	14	${ }^{98}$	No	${ }^{\text {PCP }}$	1998	NPD	${ }^{781}$	${ }^{\text {LIB }}$	${ }^{371}$	Other	166	Other	${ }^{\circ}$	3316	${ }^{\text {PCP }}$	${ }^{38701}$
vaughan woombbride		${ }_{38}^{89}$	No	$\underset{\substack{\text { PrD } \\ \text { PCP }}}{\text { cep }}$	${ }^{8} 8$	${ }_{\text {LIB }}^{\text {LIB }}$	$\stackrel{6}{171}$		${ }_{41}^{5}$	${ }_{\substack{\text { Other } \\ \text { GPO }}}^{\text {Ot }}$	${ }_{19}^{19}$	${ }_{\text {Other }}^{\text {Other }}$ Other	${ }_{0}^{0}$	${ }_{\substack{20 \\ 540}}$	${ }_{\substack{\text { PdP } \\ \text { PCP }}}$	$\underbrace{2}_{\substack{28463 \\ 35378}}$
	${ }^{37}$	${ }_{69}^{38}$	No	$\underset{\text { PCP }}{\text { PCP }}$	7015 13040 1040	${ }_{\text {NPD }}^{\text {LIB }}$	${ }_{\substack{4822 \\ 8855}}^{44}$	$\underset{\substack{\text { Npd } \\ \text { IB }}}{\text { dic }}$	${ }_{411}^{725}$	${ }_{\text {Other }}^{\text {Other }}$	${ }_{875}^{320}$	${ }_{\text {Other }}^{\text {Other }}$	0	$\underbrace{\substack{\text { 2 }}}_{\substack{124882 \\ 2681}}$	${ }_{\text {PCP }}^{\text {PCP }}$	${ }_{\substack{35378 \\ 37062}}$
York sichee	${ }_{3}$	${ }_{50}^{50}$	No	$\underset{\substack{\text { PCP } \\ \text { PCP }}}{\text { cep }}$	1975	Lib	¢	${ }_{\text {GPo }}^{\text {gip }}$	${ }_{\substack{269 \\ 6609}}$	NPD	${ }_{246}^{246}$	${ }_{\text {Other }}^{\text {Other }}$	，	－	$\underset{\text { PCP }}{\text { PCP }}$	
YORK SUD WESTON ABTITHLOUEST	${ }_{40}^{56}$	739 139	Yos	${ }_{\text {caq }}^{\text {PCP }}$	${ }_{\substack{10259 \\ 3876}}^{1029}$	${ }_{\text {PR }}$	${ }_{\substack{9516 \\ 1308}}^{\text {ase }}$	${ }_{\text {LIB }}^{\text {LiB }}$	6606 849	${ }_{\text {PCQ }}^{\text {Pro }}$	${ }_{500}^{701}$	${ }_{\text {PLQ }}^{\text {Pther }}$	${ }_{404}$	${ }_{\substack{27082 \\ 7027}}^{2701}$	${ }_{\text {PCP }}$	${ }_{\substack{29972 \\ 22087}}^{298}$
	14 103 10	${ }_{133}^{1135}$	${ }_{\text {No }}$	${ }_{\text {PLQ }}^{\text {PLO }}$	${ }_{\substack{828 \\ 5223}}$	${ }_{\text {CAR }}^{\text {cas }}$	344 4803	${ }_{\text {QS }}^{\text {Q }}$	${ }_{2}^{274}$	${ }_{\text {PcQ }}^{\text {PCO }}$	2438	${ }_{\text {PQ }}^{\text {PCQ }}$	${ }_{1323}^{227}$	（1916	${ }_{\text {cai }}^{\text {PLQ }}$	${ }_{\substack{25415 \\ 26111}}$
	${ }_{31}^{115}$	133 177 175	Yos	${ }_{\substack{\text { Plo } \\ \text { CAQ }}}^{\text {ceig }}$		${ }_{\text {ca }}^{\text {ca }}$		${ }_{\text {PLe }}^{\text {PL }}$	${ }_{952}^{2838}$	${ }_{\text {PG }}^{\text {PCQ }}$	${ }_{952}^{1832}$	¢ ${ }_{\text {PCO }}^{\text {Q }}$	${ }_{\substack{1464 \\ 575}}$	17408 7719	${ }_{\text {cas }}^{\text {cas }}$	$\substack{2611 \\ 31671}_{2610}$
	${ }_{82}^{1}$	151 151 151	No	${ }_{\text {cole }}^{\text {coa }}$	（150	${ }_{\substack{\mathrm{PCR} \\ \mathrm{PCO}}}$	${ }_{1793}^{112}$	${ }_{\substack{\text { Pa } \\ \mathrm{Pa} \\ \hline}}$	（18	${ }_{\substack{\text { PLO }}}^{\text {Q }}$	$\xrightarrow{769}$	（es	${ }_{4}$	（18637	${ }_{\text {CAR }}^{\text {CAR }}$	${ }_{\substack{33445 \\ 3845}}$
	149 90 1	${ }_{1}^{151} 1$	No	${ }_{\text {CAO }}^{\text {CAQ }}$	cile ${ }_{\substack{14365 \\ 9148}}$	${ }_{\text {Pco }}^{\text {PCQ }}$		${ }_{P \text { PQ }}$	${ }_{809}^{1955}$	¢ ${ }_{\text {QS }}^{\text {Q }}$	${ }_{724}^{1425}$	${ }_{\substack{\text { PLO } \\ \text { PLQ }}}^{\text {ene }}$	¢ ${ }_{\substack{912 \\ 598}}$		${ }_{\text {CAO }}^{\text {CAO }}$	${ }_{\substack{33455 \\ 36987}}$
$\substack{\text { BEAUCESAUD } \\ \text { BERTRAND }}$	$\underset{\substack{171 \\ 6 \\ \hline 1 \\ \hline}}{ }$	（180）	No	${ }_{\text {CAQ }}^{\text {CAQ }}$	${ }_{\substack{158519 \\ 632}}^{18}$		$\substack { 15373 \\ \begin{subarray}{c}{1516{ 1 5 3 7 3 \\ \begin{subarray} { c } { 1 5 1 6 } } \\{\text { 218 }} \end{subarray}$	－		${ }_{\substack{\text { Pa } \\ \text { PLQ }}}^{\text {ces }}$	${ }_{\substack{1423 \\ 98}}^{129}$	$\underset{\substack{\mathrm{PLO} \\ \mathrm{PCO}}}{\text { Pre }}$	${ }_{\substack{995 \\ 78}}$	35037 1173 183	${ }_{\text {CAQ }}^{\text {CAO }}$	
	${ }^{\circ}$	（184 $\begin{gathered}1.184 \\ 1.64 \\ 1\end{gathered}$	No			${ }_{\text {Pa }}^{\text {Pa }}$	边 30		198 77		3 $\substack{98 \\ 4 \\ 46}$		T8 3 38	（194	${ }_{\substack{\text { cace } \\ \text { CALQ } \\ \text { PLO }}}$	$\underset{\substack{\text { 212174 } \\ \text { 23752 }}}{3,27}$
	${ }_{4}^{4}$		No			¢	118 69 9			（ea	－		$c38450$	4， $\substack{467 \\ 275}$ 275	${ }_{\substack{\text { ctag } \\ \text { CAQ }}}$	
Camilie－Laurin	${ }^{13}$	${ }_{173}^{173}$	No	cag	${ }_{1553}^{154}$	${ }^{\mathrm{Pa}}$	${ }_{1282}^{128}$	${ }_{\text {PLO }}$	${ }_{313}$	${ }_{\substack{\text { Pca }}}^{\text {PCa }}$	${ }_{187}^{187}$	Other	${ }_{0}$	${ }_{3315}$	${ }_{\text {Pa }}$	${ }_{\substack{28358}}^{23858}$
CAMMLLE－LAUuRIN	${ }_{55}^{40}$	173 173 17	No	${ }_{\text {Pa }}^{\text {Pa }}$	（	${ }_{\text {cai }}$		${ }_{\text {PLQ }}$	（1048	${ }_{\text {PCa }}^{\text {PCa }}$	${ }^{1976}$	$\underset{\substack{\text { Other } \\ \text { Other }}}{\text { Oted }}$	${ }_{0}^{0}$		${ }_{\text {PQ }}$	${ }_{\substack{283558}}^{28385}$
$\underset{\text { camile－Laurin }}{\text { Camilieliaurin }}$	${ }_{83}^{67}$	173 173	No	${ }_{\text {PQ }}^{\text {PQ }}$	5349	cas		${ }_{\text {PLQ }}^{\text {PLQ }}$	${ }_{\substack{1757 \\ 245}}$	${ }_{\substack{\text { PcQ } \\ \text { PCQ }}}$	$\underset{976}{798}$	${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}^{0}$	${ }_{1}^{12461} 1$	${ }_{\text {PQ }}^{\text {PQ }}$	28358 28358
$\underset{\text { Camile－laurin }}{\text { Camilue－Laurin }}$	96 110	173 173	${ }_{\text {Nos }}^{\text {Nos }}$	${ }_{\text {PQ }}^{\text {PQ }}$	（7232	${ }_{\text {cal }}^{\text {cas }}$		${ }_{\text {PLQ }}^{\text {PLQ }}$		${ }_{\text {PCQ }}^{\text {PCQ }}$	1135 1260 $\substack{\text { cen }}$	${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}^{0}$	${ }_{\substack{16416 \\ 18428}}$	${ }_{\text {PQ }}$	${ }_{2}^{28358}$
Chapleau	19	189	Yes	cag	1869	${ }_{\text {PLQ }}$	${ }^{415}$	PCQ	281	Qs	263	${ }^{\text {PQ }}$	243	3071	cag	30945
Charlevolx Emeote－de－	1	${ }^{189}$	No	cag	358	QS	117	${ }^{\text {PQ }}$	${ }_{77}$	${ }^{\text {PCQ }}$	51	${ }^{\text {PLQ }}$	39	${ }_{642}$	cag	${ }^{37216}$
Charlevorx－cotede－	${ }_{2}^{21}$	${ }_{205}^{189}$	Yes	CAQ	1468 450	Qs	512 238 18	${ }^{\mathrm{PQ}}$	${ }^{504}$	${ }^{\text {PCQ }}$	${ }^{324}$	${ }^{\text {PLQ }}$	${ }^{125}$	${ }^{2933}$	cag	${ }^{37216}$
${ }_{\text {che }}^{\substack{\text { CHAUSEAU } \\ \text { CHOMEDEY }}}$	1 17 17	（	$\xrightarrow{\text { No }}$			（ect	238 239 135	（ea $\begin{gathered}\text { OS } \\ \text { PCo } \\ \text { PCo }\end{gathered}$	50	¢		（is		812 73 7190	CAQ	cis
	17 $\left.\begin{array}{l}17 \\ 8\end{array}\right)$		$\xrightarrow{\text { No }}$		（1334			（eca	（711	¢		（es		4199 $\substack{1196 \\ 543}$		
CHUTES－DE－LAA－CHAUDIERE	25 113 18	（en ${ }_{\substack{203 \\ 203 \\ 203}}$	$\xrightarrow[\substack{\text { No } \\ \text { ves } \\ \text { ves }}]{\text { efe }}$	${ }_{\text {ctag }}^{\text {CAQ }}$	311 1019 10097 1092	（eat	131 1057 1095	${ }_{\text {PQ }}^{\text {PQ }}$		（es			（174	（ 54.3	CAQ CAO CAO	${ }_{\substack{46467 \\ 46467}}^{46467}$
Chutes－De－La－chaudiere	113	203 165 167 178	Yes	${ }_{\text {cta }}^{\text {CAQ }}$	（1097	PcQ $\substack{\text { PCa }}$ PCa	$\underset{\substack{5975 \\ 268}}{\text { cos }}$	¢	2447 $\substack{189 \\ 724}$	¢ ${ }_{\text {PL }}^{\text {PLe }}$	1930 $\substack{197 \\ 129}$		1132 $\substack{122}$ 160	（inci	${ }_{\text {cai }}^{\text {CAQ }}$	
drummondibois－francs	${ }_{1}^{24}$	177 146 148	Yes	${ }_{\text {cai }}^{\text {CAR }}$	3329 315 315	${ }_{\text {PcQ }}^{\text {Pa }}$	904	${ }_{\substack{\text { PQ } \\ \text { PCQ }}}^{\text {PCo }}$		Qs	${ }_{\text {3 }}^{39}$	${ }_{\substack{\text { PLO } \\ \text { PLe }}}^{\text {ene }}$	$\stackrel{1189}{9}$	5523 463	${ }_{\text {cal }}^{\text {CAQ }}$	${ }_{\substack{35844 \\ 26581}}^{\substack{\text { 265 }}}$
DUBUC	${ }_{4}^{32}$	1146 158 1	Yes	$\stackrel{\text { CAQ }}{\substack{\text { as }}}$	5453	${ }_{\text {Pa }}^{\text {ca }}$	（1326	¢ca		Ps，	605 ${ }_{20} 0$		244 10	8433	CAQ	coick
duplessis	${ }_{99}^{64}$	158 158 158	${ }_{\text {Yos }}^{\text {Nos }}$	${ }_{\text {CAQ }}^{\text {CAQ }}$	2611 6174 184	${ }_{\text {PQ }}$		${ }_{\substack{\text { PCO } \\ \text { PCo }}}$	（1250	Qs ${ }_{\text {QS }}^{\text {Q }}$	749 1133	${ }_{\substack{\text { PLQ }}}^{\text {PLQ }}$			CAQ	
${ }_{\text {chabreme }}^{\text {FAbre }}$	${ }_{173}^{10}$	${ }_{177}^{177}$	No	${ }_{\text {cole }}^{\text {CAQ }}$	（1064	${ }_{\text {PLQ }}^{\text {PLQ }}$	${ }_{\substack{553 \\ 10395}}^{\substack{\text { coser }}}$	${ }_{\text {Pco }}^{\text {PCQ }}$	¢	Pa	边 216	${ }_{\text {PQ }}^{\text {PS }}$	${ }_{\substack{170 \\ 328 \\ \hline}}$	（2140	${ }_{\text {CAR }}$	
$\underset{\substack{\text { gatineau } \\ \text { gounin }}}{\text { a }}$	${ }_{1}^{4}$	${ }_{147}^{217}$	No	${ }_{\text {cas }}^{\text {cas }}$		${ }_{\substack{\text { PCO } \\ \text { CAO }}}$	63 68 68	${ }_{\substack{\text { PLO } \\ \text { PQ }}}$	56 40	¢S	（	$\underset{\substack{\mathrm{PQ} \\ \mathrm{PCQ}}}{ }$	328 24 2， 1		CAQ	
	13 30	（1371177 137 1	¢	（es		${ }_{\text {cole }}^{\text {CAQ }}$		${ }_{\substack{\mathrm{Pa} \\ \mathrm{PQ} \\ \hline}}$	405 $\substack{455 \\ 562}$	${ }_{\substack{\text { PLLQ } \\ \text { PLQ }}}^{\text {PLe }}$	$\substack{325 \\ 3259}$ 3	$\underset{\substack{\mathrm{PCR} \\ \mathrm{PCQ}}}{\substack{\text { Pa }}}$			Qs $\substack{\text { Qs } \\ \text { Qs }}$	
$\underset{\substack{\text { HUL } \\ \text { HULL }}}{\text { dend }}$	1 27	－${ }_{193}^{193} 1$	No	${ }_{\text {c }}^{\text {cai }}$ CAQ	（ ${ }_{895}^{89}$	${ }_{\substack{\text { PLO } \\ \text { PLe }}}^{\text {Hed }}$		${ }_{\text {PCQ }}^{\text {PS }}$	113	${ }_{\substack{\text { Ps } \\ \text { Pa }}}$	${ }_{295}$	$\underset{\substack{\text { Other } \\ \text { PCa }}}{\text { coser }}$	¢		cas	（31270
	$\stackrel{133}{2}$	158 53	$\xrightarrow[\substack{\text { Yes } \\ \text { No }}]{\text { den }}$	${ }_{\text {cas }}^{\text {ca }}$	9889 125	${ }_{\text {cab }}^{\text {PLQ }}$	3466 43	${ }_{\text {Pco }}^{\text {Q }}$	${ }_{\text {3270 }}$	${ }_{\text {PL }}^{\text {PLQ }}$	2749 10		${ }_{\text {2579 }}^{1}$	${ }_{\substack{21953 \\ 190}}$	${ }_{\text {cas }}^{\text {Pa }}$	
（	14 18 18	53 53	No	$\underset{\text { ca }}{\substack{\text { ca } \\ \text { Pa }}}$		${ }_{\text {Pa }}^{\text {ca }}$	801	${ }_{\substack{\text { PLIO } \\ \text { PLQ }}}^{\text {coid }}$	${ }_{172}^{145}$	Qs QS Q	114 145 145	$\underbrace{\text { cea }}_{\substack{\text { Pca } \\ \text { PCa }}}$	${ }_{21}^{12}$	（1908	${ }_{\text {Pa }}^{\text {Pa }}$	
	32 46	${ }_{53}^{53}$	${ }_{\text {Nos }}^{\text {Nob }}$	${ }_{\text {PQ }}{ }_{\text {PQ }}$	－ 2320	${ }_{\text {cas }}^{\text {cas }}$	（1943	${ }_{\text {PLQ }}^{\text {PLQ }}$	${ }_{560}^{420}$	${ }_{\text {QS }}^{\text {QS }}$	－ $\begin{aligned} & 241 \\ & 362\end{aligned}$	${ }_{\substack{\text { PcQ } \\ \text { PCQ }}}^{\text {cea }}$	－${ }_{84}^{53}$	${ }_{77575}^{4977}$	${ }_{\text {PQ }}$	${ }_{\substack{8364 \\ 8364}}$
	14 8 8			$\underset{\substack{\text { PLQ } \\ \text { QS }}}{ }$	${ }_{\substack { \text { c／} \\ \begin{subarray}{c}{177{ \text { c／} \\ \begin{subarray} { c } { 1 7 7 } }\end{subarray}}$	${ }_{\text {cose }}^{\text {CAQ }}$		${ }_{\substack{\mathrm{PrCQ} \\ \mathrm{PQ}}}$	（	¢		（es	$\substack{84 \\ 110 \\ 5 \\ \hline}$			
$\underset{\text { JEAN－LESAGE }}{\text { Jem }}$	81 19	161 164 168	Yes	¢	－3930 1790	${ }_{\text {cai }}^{\text {cai }}$	2643 749	${ }_{\substack{\text { PCO } \\ \text { PCo }}}$	${ }_{1506}^{151}$	$\stackrel{\text { PQ }}{\text { Q }}$	（1400 $\begin{gathered}117 \\ 317\end{gathered}$	$\underset{\substack{\text { PLQ } \\ \text { PQ }}}{\text { Pa }}$	${ }_{193}^{406}$		${ }_{\text {cte }}^{\text {PLS }}$	${ }_{\substack{29737 \\ 26019}}^{2987}$
joliette	${ }_{78}^{24}$	${ }_{221}^{221}$	${ }_{\text {No }}$	${ }_{\text {cai }}^{\text {caia }}$	2153 5305	${ }_{\text {PQ }}^{\text {PQ }}$	（1451	${ }_{\text {QS }}^{\text {QS }}$	439 1381	${ }_{\substack{\text { Pca } \\ \text { PCQ }}}$	342 1139 118	${ }_{\text {PLQ }}^{\text {PLQ }}$	－142 354 54	${ }_{\substack{4527 \\ 1223 \\ \hline}}$	${ }_{\text {cal }}^{\text {cas }}$	${ }_{\substack{39330 \\ 39350}}$
Jonquirre JoNQUUERE	${ }_{1}^{6}$	160 160 1.0	Yos	${ }_{\text {cai }}^{\text {cai }}$	－	${ }_{\text {PQ }}^{\text {PQ }}$	186 440	${ }_{\text {PCO}}^{\text {PCQ }}$	－${ }_{160}^{160}$	QS	$\underset{127}{61}$	${ }_{\substack{\text { PLQ } \\ \text { PLQ }}}^{\text {ded }}$	${ }_{91}^{17}$	${ }_{2339}^{939}$	${ }_{\text {cas }}^{\text {cas }}$	$\underbrace{30460}_{\text {30460 }}$
Jonevilire JoNQUURRE	15 151 15	160 160 160	Yes	${ }_{\text {coia }}^{\text {cai }}$		${ }_{\substack{\mathrm{P} \\ \mathrm{PQ} \\ \hline}}$		${ }_{\substack{\text { Pco } \\ \text { PCQ }}}$		（es	190 2461 10	${ }_{\substack{\text { PLQ }}}^{\text {PLQ }}$	115 615	${ }_{\substack{3524 \\ 28575}}^{232}$	${ }_{\text {CAQ }}^{\text {CAQ }}$	（3060
	${ }_{2}^{8}$	156 161 161	Yos	${ }_{\text {cai }}^{\text {cai }}$	1715 66	${ }_{\substack{\text { PLQ } \\ \text { PLQ }}}$	309 22	－${ }_{\text {QS }}^{\text {Q }}$	199 20	${ }_{\text {Pco }}^{\text {Pa }}$	${ }_{20}^{111}$	$\underset{\substack{\text { PLCQ } \\ \text { PCQ }}}{\text { cte }}$	94 10	2428 138 138	${ }_{\text {cai }}^{\text {cas }}$	${ }_{\substack{31790 \\ 34252}}$
	${ }_{122}^{7}$	$\underset{\substack{187 \\ 187}}{\substack{187}}$	No	$\underset{\substack{\text { cai } \\ \text { PLQ }}}{\text { coid }}$	（850	${ }_{\substack{\text { PLİ } \\ \text { CAR }}}$		（ess	－	${ }_{\text {Pa }}$	${ }_{\substack{207 \\ 2381}}^{210}$	$\underset{\substack{\text { Pco } \\ \text { PCQ }}}{\text { ced }}$	（108	1903 19852 1	${ }_{\text {CAR }}$	${ }_{\substack{32632 \\ 32632}}$
	174 15	${ }_{150}^{187}$	No	cas	${ }_{756}^{9758}$	${ }_{\text {PLLQ }}^{\text {PLO }}$	${ }_{603}^{9175}$	cas	${ }_{241}^{5352}$	${ }_{\text {PCQ }}^{\text {PCO }}$	3809 209	${ }_{\text {PcQ }}^{\text {PQ }}$	2286 173	${ }_{\substack{30380 \\ 1982}}$	$\mathrm{CAQ}_{\mathrm{CS}}$	${ }_{\substack{32632 \\ 26882}}$
	$\stackrel{21}{88}$	（150	No	（eas	（1125	${ }_{\substack{\text { PLQ } \\ \text { PLQ }}}$	${ }_{483}^{833}$	${ }_{\text {ca }}^{\text {ca }}$	（3088	${ }_{\text {PQ }}^{\text {PS }}$	283 284	${ }_{\substack{\text { PCQ } \\ \text { PCQ }}}^{\text {ceg }}$	${ }_{121}^{259}$	2888	${ }_{\text {cse }}^{\text {cas }}$	${ }_{\substack{26182 \\ 32822}}^{2629}$
$\substack{\text { Laval－des－Rapides } \\ \text { LEVIS }}$	144 17 17	184 $\substack{185 \\ 185}$ 185	Yes	${ }_{\text {cose }}^{\text {CAQ }}$	8014 1374 1874		${ }_{\substack{7524 \\ 234}}$	¢ ${ }_{\text {PLe }}^{\text {PLe }}$	¢ ${ }_{\text {4201 }}^{222}$	PQ					${ }_{\text {cas }}^{\text {cae }}$	${ }_{\substack{32832 \\ 36646}}$
Lotinitreverrontenac	19 3 13 13	（	cos					${ }_{\substack { \text { Pa，} \\ \begin{subarray}{c}{\text { PLQ } \\ \text { PLQ }{ \text { Pa，} \\ \begin{subarray} { c } { \text { PLQ } \\ \text { PLQ } } }\end{subarray}}$	cis $\substack{293 \\ 192}$		（	${ }_{\text {cos }}^{\text {Pa }}$			${ }_{\text {che }}^{\text {cal }}$	（ $\begin{gathered}36646 \\ 41929 \\ 11929\end{gathered}$
Lotbiniere－prontenac	${ }_{1}^{13}$	$\underset{\substack{209 \\ 164 \\ 174}}{\substack{\text { a }}}$	No		（1320	coiple	（1034		（102		（1929	$\underset{\substack{\text { pra } \\ \text { PCO }}}{\text { PCo }}$	188 784 784	${ }_{\substack{491 \\ 9574}}^{\text {ati }}$	${ }_{\substack{\text { caQ } \\ \text { PLO }}}^{\text {cea }}$	${ }_{\substack{37360 \\ \\ \text { 27135 }}}$
Marcmarievictorin	${ }_{6}$	${ }_{151}^{151}$	No	CAR	${ }_{5887}^{588}$	${ }_{\text {Pa }}$	${ }_{321}^{328}$	${ }_{\text {Q }}^{\text {S }}$	${ }_{152}$	${ }_{\text {PLe }}^{\text {PLe }}$	${ }_{92}$	${ }_{\text {PCo }}$	${ }_{98}$	${ }_{1201}$	${ }_{\text {cal }}$	${ }_{2}^{271777}$
Marie－victorin Maroueterem	${ }_{1}^{57}$	$\underset{157}{151}$	${ }_{\text {No }}^{\text {No }}$	${ }_{\text {cai }}^{\text {cai }}$	${ }_{85}^{4176}$	${ }_{\substack{\text { PLQ } \\ \text { PLQ }}}$	${ }_{80}^{2827}$	$\stackrel{\text { Qs }}{\text { QS }}$	${ }_{28}^{2155}$	${ }_{\text {PRQ }}^{\text {PLQ }}$	1071 27	${ }_{\substack{\text { PcQ } \\ \text { PCQ }}}$	${ }_{22}^{703}$	${ }_{\substack{10932}}^{242}$	${ }_{\text {CaQ }}^{\text {PLQ }}$	${ }_{2}^{271747}$
${ }_{\text {M }}^{\text {Marquette }}$ MAROUETTE	${ }_{41}^{2}$	$\underset{\substack{157 \\ 157 \\ 157}}{ }$	No		$\begin{array}{r}85 \\ 2510 \\ \hline 20\end{array}$	${ }_{\text {PLAQ }}^{\text {CAL }}$	${ }_{\text {cos }}^{\text {805 }}$	$\stackrel{\text { Q }}{\text { p }}$	28 583 88	PQ	${ }_{473}^{27}$	${ }_{\substack{\mathrm{PcQ} \\ \mathrm{Pa} \\ \hline \text { a }}}$	${ }_{323}^{22}$		${ }_{\substack{\text { PLa } \\ \text { PLe }}}$	
marquette	${ }_{151}^{43}$	${ }_{159}^{157}$	${ }_{\text {Nos }}^{\text {Nos }}$	${ }_{\text {caQ }}^{\text {PLQ }}$	2693 17512	${ }_{\text {cas }}^{\text {Pa }}$	${ }_{\substack{1011 \\ 6156}}$	${ }_{\text {PCO }}^{\text {QS }}$	${ }_{6}^{611} 409$	PCQ	${ }_{2850}^{491}$	${ }_{\substack{\text { PQ } \\ \text { PLQ }}}$	${ }_{\text {3 }}^{234}$	${ }_{\substack{5140 \\ 3447}}^{\text {S4，}}$	${ }_{\text {cha }}^{\text {PLIQ }}$	${ }_{\substack{25442 \\ 3493}}^{293}$
Matane－matapedia	$\stackrel{9}{81}$	179 179 1789	$\xrightarrow{\text { Yes }}$ Yes	${ }_{\substack{\mathrm{PQ} \\ \mathrm{Pa} \\ \hline}}$	1104 9252 9	${ }_{\text {cai }}^{\text {cai }}$	$\underset{\substack{346 \\ 2328}}{\substack{\text { 220 }}}$	${ }_{\substack{\text { PCO } \\ \text { PCa }}}^{\text {Pra }}$	$\begin{array}{r}79 \\ 991 \\ \hline 18\end{array}$	¢S	¢		－ $\begin{array}{r}37 \\ 254 \\ \hline 8 .\end{array}$	1634 13373 1073	${ }_{\text {PQ }}^{\text {Pa }}$	${ }_{\substack{29623 \\ 29623}}^{\text {ane }}$
$\xrightarrow[\text { MaUricererichard }]{\text { MAURICERICHARD }}$	${ }_{3}^{5}$	165 165	No	Qs QS S	${ }_{\text {che }}^{\text {2399 }}$	${ }_{\text {CAR }}^{\text {CAR }}$		${ }_{\text {PQ }}^{\text {PQ }}$	118 $\substack{1196 \\ 1208}$ 108	${ }_{\substack{\text { PLOL } \\ \text { PLe }}}^{\text {PLe }}$	$\underset{\substack{141 \\ 9.9 \\ 9.9}}{ }$	$\underset{\substack{\text { Pco } \\ \text { PCO }}}{\text { PCo }}$	－	$\underset{\substack{962 \\ 7157}}{\substack{159}}$		${ }_{\substack{30793 \\ \text { 30793 }}}^{\text {and }}$
	34 3 136	（149 $\begin{aligned} & 1165 \\ & 149\end{aligned}$		（eare	（ ${ }_{\text {2499 }}^{\substack{49 \\ 11958}}$	（ead $\begin{gathered}\text { CAR } \\ \text { PCQ } \\ \text { PCQ }\end{gathered}$	2394 ceat 5945		（1208		（	$\underset{\substack{\text { Pco } \\ \text { PLQ } \\ \text { PLQ }}}{\text { cede }}$	（ 259		$\underset{\substack{\text { Cas } \\ \text { CAQ }}}{\text { cas }}$	（inco

Comatamer		Tomat bexam	Rod Elected	riset	Frist Conet	Scoend	Scoend Comet	Thnad	Thard Coumt	Fown	Foursh Conte	Eith	Pran Coumt	Total Votes	Exad Wimar	${ }^{\text {Ead Toatil Voceses }}$
¢，							$\xrightarrow{\text { max }}$	${ }^{\text {pa }}$			¢	${ }_{88}^{\text {rag }}$		${ }_{\text {a }}$	${ }_{\text {pio }}^{\text {or }}$	
，mix								\％		ca						
comater							，	cas		po	${ }^{\text {ase }}$	raq				
pampar								${ }_{\text {ca }}$	，	${ }_{\text {pom }}^{\text {omam }}$				mar	${ }^{\text {pro }}$	
comer								cos						，	${ }_{\text {cata }}^{\text {cio }}$	
cosm							，	${ }^{\circ}$	${ }_{868}$	）	\％	${ }_{\text {cra }}^{\text {pra }}$	cient	$\xrightarrow{\text { and }}$	cila	com
							䞨		，	\％	\％			cos	${ }_{\text {a }}^{\text {a }}$	
，								ciay					\％		${ }_{\text {c }}^{\text {cis }}$	
							${ }_{\text {ses }}$	${ }^{\text {pq }}$	5s8	\％ce	（1）	${ }_{\text {pue }}^{\text {pue }}$		$\underset{\substack{\text { Stic } \\ \text { crese }}}{ }$	cas	
							\％on	${ }^{\text {po }}$	4，	pce	15	pıe	\％88	${ }_{\text {2asa }}$	cas	ssas
comation							\％en	${ }^{\mathrm{po}}$	${ }^{259}$	${ }_{\text {rea }}$	\％	${ }_{\text {prea }}^{\text {pre }}$	tom	${ }^{22149}$	${ }_{\text {cas }}$	
sarrimat							20，	pie	${ }_{\text {cosem }}^{\text {la }}$	${ }_{\text {pos }}$	，	p	\％	，	caid	cos
							cos	can			cosm	${ }_{\substack{\text { pata } \\ \text { pra }}}$			cita	
							，			${ }_{\text {\％}}$	\％	碗	${ }_{88}^{68}$	\％om		
santerachise							${ }^{\text {ase }}$	cas	${ }^{307}$	${ }^{\text {pLe }}$	32	pce	${ }^{100}$	12000	${ }^{\text {as }}$	mash
							旡	\％os	边	品品边	（100		，	coicle	a	
cosm									2men	coic	\％		cose		${ }_{\text {as }}^{\text {as }}$	
TROIS－RIVIERES UNGAVA								－	${ }^{1216}$	cad		${ }^{\text {ma }}$				com
mick							边	${ }^{\text {pa }}$	\％	\％					${ }_{\text {a }}$	
yema																
							come	${ }_{\text {caia }}^{\text {cas }}$	，	${ }^{\text {Pa }}$	，	¢å	cosm		\％	come
，mains							com			${ }^{\text {pa }}$	${ }_{\text {cosm }}$	${ }_{\text {cras }}^{\text {pra }}$	\％			come
ynuort								${ }^{\text {s }}$	，	cis						
							${ }_{\text {cose }}$	${ }_{\text {cro }}^{\text {cro }}$	¢	vop					${ }_{\text {bo }}^{\text {mo }}$	cise
							，	${ }_{\text {cose }}^{\text {Lipe }}$	，	come	${ }^{10}$	\％ow		边	品	
							\％	eroc			，			com		
							，	${ }_{\text {吅吅 }}$	$\substack{\text { 20m } \\ \text { mox }}$	${ }_{\text {crec }}^{\text {cic }}$	$\substack{\begin{subarray}{c}{\text { chem } \\ \text { cis }} }} \end{subarray}$	为		com	$\underset{\text { croc }}{\text { cos }}$	
							$\underset{\substack{70 \\ \text { cars }}}{ }$					Some			${ }_{\text {go }}^{\text {nog }}$	
							coid	cocm				come		coicle		cest
							$\stackrel{8}{ }$	（ero				Oneme		\％	品	${ }_{\text {cosem }}^{\text {anden }}$
							为			cis	${ }_{\text {coic }}$	\％om		\％	㗊	\％em
							\％					com			品	\％
，ier hasko							cose			$\underset{\substack{\text { cric } \\ \text { cric }}}{\text { cem }}$		\％om				cis
Nux hissouol							cis	（eme	\％			\％ow				colat
Mexas sion									com		，	\％om				amom
										cis		\％om		cosm		
							${ }^{38}$	${ }_{\text {Lro }}$	387		238					

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Constituency \& Boxes Counted \& Total Boxes \& RDI Elected \& First \& First Count \& Second \& Second Count \& Third \& Third Count \& Fourth \& Fourth Count \& Fifth \& Fifth Count \& Total Votes \& End Winner \& End Total Votes \\
\hline \& \({ }^{40}\) \& \({ }^{229}\) \& False \& \({ }_{\text {cPa }}\) \& 2324 \& \({ }^{\text {BQ }}\) \& 1541 \& LPC \& 1287 \& NDP \& 542 \& Other \& 0 \& 5694 \& \({ }_{\text {cPC }}\) \& \({ }_{59096}\) \\
\hline \& 1 \& \({ }^{77}\) \& False \& \({ }_{\text {LPC }}\) \& \({ }^{38}\) \& \({ }_{\text {cPC }}\) \& \& \({ }^{\text {GPC }}\) \& 11 \& NDP \& \({ }^{3}\) \& Other \& 0 \& \({ }^{83}\) \& \({ }^{\text {LPC }}\) \& 19910 \\
\hline Chatenuguef lacile \& 12
201 \& \(\underset{\substack{220 \\ 220}}{ }\) \& \& \(\underset{\substack{\text { LPCC } \\ \text { LPC }}}{\text { cec }}\) \& \& \({ }_{\substack{\text { cic } \\ \text { BQ }}}^{\text {BQ }}\) \& （169\％ \& \(\underset{\substack{\text { crc } \\ \text { crec }}}{\text { cre }}\) \& （184 \& Nop \& －\({ }_{\text {34，}}^{\text {34，}}\) \& \({ }_{\text {Onem }}^{\text {Other }}\) Other \& \％ \& \begin{tabular}{l}
1368 \\
43450 \\
\hline 4，
\end{tabular} \& \(\underset{\substack{\text { LPC } \\ \text { LPC }}}{\text { cec }}\) \& \({ }_{\substack{52402 \\ 52402}}^{5142}\) \\
\hline hateauguay lacolle \& \({ }_{210}^{210}\) \& \({ }_{220}\) \& \({ }_{\text {False }}\) \& \({ }_{\text {LPC }}\) \& \({ }_{19262}\) \& \({ }_{\text {Bq }}\) \& \({ }_{18643}^{1060}\) \& CPC \& \({ }_{5638}\) \& NDP \& \({ }_{3764}\) \& \& \& 47307 \& \({ }_{\text {LPC }}\) \& \\
\hline Coast of bays central
Notre dane \& \({ }^{40}\) \& \({ }_{231}\) \& False \& LpC \& 1903 \& \({ }_{\text {cPC }}\) \& 1222 \& NDP \& 307 \& \(\mathrm{GPC}^{\text {c }}\) \& 114 \& Other \& － \& 3546 \& LpC \& 34182 \\
\hline COMPTon stanstead \& 170

215 \& ${ }_{2}^{269}$ \& $\substack{\text { False } \\ \text { False }}$ \& ${ }_{\substack{\text { LPC } \\ \text { LPC }}}^{\text {cec }}$ \& \& ${ }^{\mathrm{BQ}}$ \& \begin{tabular}{|c}
9539

1331

1381

 \& ${ }_{\substack{\text { cPC } \\ \text { CPC }}}$ \& ${ }_{\substack{4449 \\ 6199}}$ \& （ndp \&

3035

4016

\hline 18
\end{tabular} \& Other \& \bigcirc \& \& ${ }_{\text {LpC }}^{\text {LpC }}$ \& ${ }_{\substack{58237 \\ 58237}}$

\hline CUMERLAND Colchester \& （102 \& \& \& $\underset{\substack{\text { CPCC } \\ \text { LPC }}}{\text { cter }}$ \& 15310
$\substack{43 \\ 5728}$ \& \& \& \& \& \& （18\％ \& $\substack{\text { Other } \\ \text { Other } \\ \text { Oher }}$ \& ${ }_{0}^{0}$ \& （ \& ${ }_{\substack{\text { LPLC } \\ \text { LPC }}}^{\text {LPC }}$ \& $\underset{\substack{385350 \\ 45550}}{4540}$

\hline DARTMOUTH COLE \& 1 \& ${ }_{1}^{228}$ \& False \& ${ }_{\text {NDP }}$ \& ${ }_{71}$ \& LPC \& ${ }_{69}$ \& CPC \& 201 \& ${ }_{\text {GPC }}$ \& ${ }_{23}$ \& Other \& ${ }_{0}$ \& 191 \& LPC \& ${ }_{53499}$

\hline harbour \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline （ind \& ${ }_{115}^{2}$ \& $\underset{\substack{241 \\ 240}}{\substack{24 \\ \\ 0}}$ \& \& （ex \& \& \& ${ }_{\text {c }}^{\text {307 }}$ \& \& \& （in ${ }_{\substack{\text { Nop } \\ \text { NDP }}}^{\text {NDP }}$ \& \& $\xrightarrow[\substack{\text { Other } \\ \text { Other } \\ \text { Other }}]{\text { ate }}$ \& － \& \& （inc \&

\hline \& ${ }^{10}$ \& （158 \& \& \& （ta \& ${ }_{\substack{\text { Gpe } \\ \text { CPC }}}^{\text {Lec }}$ \& 30
511
710 \& ${ }_{\substack{\text { crec } \\ \text { LPC }}}^{\text {cric }}$ \& ${ }_{4}^{181}$ \& NDP \& ${ }^{73}$ \& Other \& ${ }_{0}^{0}$ \& ${ }_{\substack{1558 \\ 1023 \\ \hline 18}}$ \& ${ }_{\substack{\text { GPCC }}}^{\text {LPCC }}$ \& ${ }_{\substack{20178 \\ 9909}}^{290}$

\hline $\stackrel{\text { Predericton }}{\text { fredricton }}$ \& ${ }_{52}^{15}$ \& ${ }_{\substack{158 \\ 158}}$ \& $\underset{\substack{\text { Prase } \\ \text { Fanse }}}{ }$ \& ${ }_{\text {GPC }}^{\text {GPC }}$ \& \& ${ }_{\text {CPC }}$ \& ${ }_{3290}$ \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& ${ }_{2961}^{697}$ \& NDP \& ${ }_{714}^{120}$ \& \& ${ }_{0}^{0}$ \& ${ }_{1035}^{2325}$ \& ${ }_{\text {GPC }}^{\text {GPC }}$ \& ${ }_{9}^{49909}$

\hline $\underset{\text { Predericion }}{\text { Fundy roval }}$ \& $\stackrel{\substack{13, 2 \\ 2}}{ }$ \& （1988 \& ${ }_{\text {che }}^{\substack{\text { Pase } \\ \text { False }}}$ \& ${ }_{\substack{\text { crec }}}^{\text {CPC }}$ \& ${ }_{\substack{11665 \\ 66}}^{19}$ \& ${ }_{\text {LPC }}^{\text {CPC }}$ \& ${ }_{40}^{10265}$ \& ${ }_{\text {cre }}^{\substack{\text { LPC }}}$ \& $\underset{ }{938}$ \& Nother \& ${ }_{3}^{2087}$ \& ${ }_{\text {O }}^{\text {Other }}$ Other \& ！ \& ${ }_{\text {c }}^{33357} 129$ \& ${ }_{\text {CPC }}^{\text {CPC }}$ \& ${ }_{48646}^{49909}$

\hline \& 25
2 \& 214 \& False
False \& ${ }_{\text {cp }}^{\text {cp }}$ \& ${ }_{122}^{1723}$ \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& 1015
108 \& ${ }_{\text {cra }}^{\text {CPC }}$ \& 591
${ }_{23}$ \& NDP \& 374
10 \& ${ }_{\text {Other }}^{\text {Other }}$ \& \bigcirc \& 3703
263 \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& 48646
38380

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& ${ }^{10}$ \& 214 \& False \& BQ \& s71 \& ${ }_{\text {LpC }}$ \& ${ }^{869}$ \& cPC \& 218 \& NDP \& 59 \& Other \& 0 \& 2017 \& LPC \& ${ }^{38380}$

\hline \& ${ }^{25}$ \& 214 \& False \& ${ }^{\text {Bq }}$ \& 1899 \& LpC \& 1636 \& cPC \& ${ }^{383}$ \& NDP \& ${ }^{123}$ \& Other \& 0 \& ${ }^{0941}$ \& LpC \& ${ }^{38380} 0$

\hline \& 140 \& 214 \& False \& BQ \& 9173 \& LpC \& ${ }^{913}$ \& ${ }_{\text {cpe }}$ \& ${ }^{1753}$ \& NDP \& 890 \& Other \& 0 \& 20950 \& Lpc \& 83880

\hline \& 189 \& 214 \& False \& ${ }_{\text {LPC }}$ \& ${ }^{13719}$ \& вq \& ${ }_{13371}$ \& ${ }_{\text {cpi }}$ \& 2643 \& NDP \& 1398 \& Other \& 0 \& 31131 \& ${ }_{\text {LPC }}$ \& ${ }^{38380}$

\hline GAsprsisile Les lies de la \& 207 \& 214 \& False \& ${ }_{\text {LPC }}$ \& 14595 \& вq \& ${ }^{14503}$ \& ${ }_{\text {cPC }}$ \& 2780 \& NDP \& 1504 \& Other \& 0 \& ${ }_{33382}$ \& ${ }_{\text {LPC }}$ \& ${ }^{38380}$

\hline \& ${ }^{212}$ \& 214 \& False \& ${ }_{\text {LPC }}$ \& 16093 \& вq \& 15664 \& ${ }_{\text {cpa }}$ \& 2993 \& nDp \& 1640 \& Other \& 0 \& 36190 \& ${ }_{\text {LPC }}$ \& ${ }^{38380}$

\hline halifa ouest \& ${ }_{35}^{30}$ \& ${ }_{225}^{225}$ \& False \& ${ }_{\text {LPC }}^{\text {LpC }}$ \& ${ }_{2129}^{2195}$ \& ${ }^{\text {ndp }}$ \& ${ }_{\text {897 }}^{8965}$ \& $\underset{\text { cre }}{\text { cpo }}$ \& ${ }_{851}^{8137}$ \& ${ }_{\text {crec }}^{\text {cpe }}$ \& ${ }_{5}^{567}$ \& Other \& \bigcirc \& ${ }_{4}^{4505}$ \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& ${ }_{\substack{54357 \\ 53037}}$

\hline Hochelaca \& ${ }_{70}$ \& ${ }_{219}^{219}$ \& \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& ${ }_{5003}^{2235}$ \& ${ }_{\text {BQ }}^{\text {BQ }}$ \& ${ }_{\substack{1865 \\ 4824}}$ \& ${ }_{\text {NDP }}$ \& ${ }_{2132}^{1137}$ \& ${ }_{\text {CPC }}$ \& ${ }_{660}^{318}$ \& \& ${ }_{0}$ \& ${ }^{\text {125519 }}$ \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& ${ }_{\substack{53037 \\ 53037}}^{5037}$

\hline honocre mericier \& ${ }_{1}^{140}$ \& － 209 \& $\substack{\text { Farse } \\ \text { False }}$ \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& ${ }_{5685}^{985}$ \& ${ }_{\text {BQ }}^{\text {BQ }}$ \& ${ }_{\substack{8717 \\ 26}}$ \& ${ }_{\text {cric }}^{\text {cip }}$ \& $\underset{14}{14}$ \& ${ }_{\substack{\text { cpe } \\ \text { NDP }}}^{\text {coser }}$ \& $\underset{\substack{1305 \\ 6}}{ }$ \& ${ }_{\text {O }}^{\text {Other }}$ Other \& \％ \& ${ }_{\substack{25805 \\ 102}}$ \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& $\underbrace{5033}_{\substack{53037 \\ 5033}}$

\hline \& 25

1 \& ${ }_{271}^{209}$ \& ${ }_{\substack{\text { False } \\ \text { False }}}^{\text {a }}$ \& ${ }_{\text {ce }}^{\text {LPC }}$ \& | 3136 |
| :---: |
| 264 |
| 1 | \& ${ }_{\text {LPC }}^{\text {BQ }}$ \& ${ }_{72}^{1335}$ \& ${ }_{\substack{\text { cric } \\ \text { CPC }}}^{\text {ce }}$ \& 481

38 \& ${ }_{\text {NDP }}^{\text {NDP }}$ \& ${ }_{24}^{408}$ \& ${ }_{\text {Other }}^{\text {Other }}$ \& ${ }_{0}^{0}$ \& （ \& ${ }_{\text {coc }}^{\text {LPC }}$ \& ${ }_{\substack{50363 \\ 57699}}$

\hline Jonquirre
JoNQuliere \& ${ }_{2}^{1}$ \& ${ }_{210}^{210}$ \& ${ }_{\substack{\text { False } \\ \text { False }}}^{\text {cose }}$ \& ${ }_{\substack{\text { BQ } \\ \text { BQ }}}$ \& $\underset{\substack{108 \\ 216}}{ }$ \& ${ }_{\substack{\text { cpe } \\ \text { CPC }}}^{\text {cem }}$ \& ${ }_{177}^{94}$ \& ${ }_{\substack{\text { NDP } \\ \text { NDP }}}$ \& 54
105

105 \& ${ }_{\text {LPC }}^{\text {LpC }}$ \& ${ }_{94}^{47}$ \& ${ }_{\text {Other }}^{\text {Other }}$ \& ${ }_{0}$ \& | 303 |
| :--- |
| 592 | \& ${ }_{80}^{\mathrm{BQ}}$ \& ${ }_{493867}^{49367}$

\hline Jonquiree \& ${ }_{55}^{15}$ \& 210
210
210 \& $\substack{\text { Fatse } \\ \text { False }}$ \& ${ }_{\text {BQ }}^{\text {BQ }}$ \& ${ }_{4693}^{1077}$ \& ${ }_{\text {NDP }}^{\text {NDP }}$ \& \& \& ${ }_{2614}^{6614}$ \& $\substack{\text { LpC } \\ \text { LPC }}_{\text {ceg }}$ \& \& Other \& 0 \& ${ }_{\substack{2879 \\ 12695}}$ \& ${ }_{\text {BQ }}^{\text {BQ }}$ \& ${ }_{\text {49367 }}^{49367}$

\hline La point me mile \& 10
119 \& 243
204

204 \& $\substack{\text { Fatse } \\ \text { False } \\ \text { Fuse }}$ \& \& | 1025 |
| :---: |
| 15168 |
| 15168 | \& ${ }_{\substack{\text { LPC } \\ \text { LPC }}}^{\text {cec }}$ \& \& ${ }_{\substack{\text { NPD }}}^{\text {crec }}$ \& 2210 \& （tyc \& （147\％ \& Other \& \％ \& 1938

$\substack{19779}$
379 \& ${ }^{\text {BOL }}$ \&

\hline \& ${ }_{25}$ \& ${ }^{20}$ \& ${ }_{\text {Frase }}^{\text {False }}$ \& $\stackrel{\text { LpC }}{\text { Lpe }}$ \& ${ }_{896}$ \& ${ }_{\text {cpe }}$ \& 474 \& $\stackrel{\text { npp }}{ }$ \& ${ }_{330}$ \& $\underset{\text { grc }}{\substack{\text { pre }}}$ \& ${ }_{30}$ \& Other \& \bigcirc \& ${ }_{1730}^{1730}$ \& ${ }_{\text {LPC }}^{\text {LPP }}$ \& ${ }_{1}^{141429}$

\hline ${ }_{\text {che }}^{\text {Lac SAINT JEAN }}$ \& ¢0 \& ${ }_{267}^{267}$ \& $\substack{\text { Fatse } \\ \text { False }}$ \& \& | 4543 |
| :---: |
| 6212 |
| 6 | \& $\substack{\text { LpC } \\ \text { CPC }}_{\text {cec }}$ \& ${ }_{\substack{2355 \\ 3234}}^{\substack{\text { 32，}}}$ \& \& cin ${ }_{\substack{2325 \\ 3117}}$ \& Nip \& ${ }_{717}^{546}$ \& Other \& 0 \& （9769 \& ${ }_{\text {BO }}^{\text {BO }}$ \& ${ }_{\substack{54227 \\ 54227}}^{\substack{\text { che }}}$

\hline lasalte mmard verdun \& ${ }_{95}$ \& $\underset{203}{207}$ \& $\substack{\text { Patse } \\ \text { Fatse } \\ \text { che }}$ \& \& \& ${ }_{\text {BQ }}$ \& ${ }_{\substack{5835 \\ 5805}}$ \& ${ }_{\substack{\text { NTP }}}^{\text {cre }}$ \& 3521 \& $\underset{\text { cre }}{ }$ \& ${ }_{1941}^{1921}$ \& Other \& \bigcirc \& \& ${ }_{\text {LPC }}^{\text {LPC }}$ \&

\hline Laurentides latelile \& ${ }_{2}^{5}$ \& （284 \& $\substack{\text { Farse } \\ \text { False }}$ \& ${ }_{\text {BQ }}^{\text {BQ }}$ \& （2088 \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& ${ }_{95}^{198}$ \& ${ }_{\text {crec }}^{\text {cric }}$ \& ${ }_{13}^{49}$ \& ${ }_{\text {NDP }}^{\text {NDP }}$ \& ${ }^{22}$ \& ${ }_{\text {Other }}^{\text {Other }}$ \& \bigcirc \& ${ }_{216}^{477}$ \& ${ }_{\text {cipc }}^{\text {LPC }}$ \&

\hline LaUrier sainte marie \& ${ }_{19}$ \& 174
174 \& \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& ${ }_{\substack{641 \\ 1687}}^{681}$ \& ${ }_{\text {BQ }}^{\text {BQ }}$ \& － \& ${ }_{\substack{\text { NDP } \\ \text { NDP }}}^{\text {den }}$ \& ${ }_{727}^{178}$ \& ${ }_{\text {GPC }}^{\text {cpe }}$ \& 51
156 \& ${ }_{\text {Other }}^{\text {Other }}$ \& 0 \& 1420
3549 \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& $\underbrace{}_{\substack{53409 \\ 53409}}$

\hline Lourier sainte marie \& ${ }_{35}^{30}$ \& ${ }_{250}^{174}$ \& ${ }_{\substack{\text { False } \\ \text { False }}}^{\text {cose }}$ \& ${ }_{\substack{\text { LPC } \\ \text { LPC }}}^{\text {ced }}$ \& 2829
1543 \& ${ }_{\text {cre }}^{\text {BP }}$ \& 1599
1025 \& ${ }_{\text {NDP }}^{\text {NDP }}$ \& ${ }_{1549}^{1594}$ \& ${ }_{\text {GPC }}^{\text {Gp\％}}$ \& 335
115 \& ${ }_{\text {Other }}^{\text {Other }}$ \& 0 \& \& ${ }_{\text {LPC }}^{\text {LpC }}$ \& ${ }_{\substack{53409 \\ 38426}}$

\hline Longuevil charles \& ${ }^{20}$ \& ${ }^{230}$ \& False \& ${ }^{\text {Bq }}$ \& ${ }^{1193}$ \& LpC \& 1142 \& ndp \& 291 \& cpa \& ${ }^{208}$ \& Other \& 。 \& 2834 \& ${ }_{\text {LpC }}$ \& 51544

\hline Longuevil charles \& ${ }^{196}$ \& ${ }^{230}$ \& False \& ${ }_{\text {LPC }}$ \& ${ }^{15988}$ \& ${ }^{\text {BQ }}$ \& ${ }^{15053}$ \& NDP \& ${ }^{1333}$ \& ${ }_{\text {cpe }}$ \& 2986 \& Other \& ${ }^{\circ}$ \& ${ }^{38360}$ \& Lpc \& 51544

\hline Longubul sant hubert
LOUIS HEBERT \& ${ }_{1}^{1}$ \& $\underset{\substack{226 \\ 225}}{205}$ \& $\substack{\text { False } \\ \text { False }}$ \& $\underset{\substack{\text { LPC } \\ \text { LPC }}}{\text { cec }}$ \& 18

42 \& ${ }_{\text {crec }}^{\text {CPC }}$ \& ¢ $\begin{aligned} & 12 \\ & 15\end{aligned}$ \& \& | 3 |
| :--- |
| 6 | \& \& ${ }_{2}^{1}$ \& ${ }_{\text {Other }}^{\text {Other }}$ Other \& \bigcirc \& 34

65
65 \& ${ }_{\text {che }}^{\text {LPC }}$ \& ${ }_{\substack{59844 \\ 62060}}$

\hline $\underset{\text { Louis sais herert }}{\text { Lautent }}$ \& ${ }^{15}$ \& ${ }_{255}^{225}$ \& $\substack{\text { Farlse } \\ \text { False }}$ \& ${ }_{\substack{\text { LPC } \\ \text { CPC }}}^{\text {ce }}$ \& ${ }_{\text {che }}^{\substack{851 \\ 224}}$ \& ${ }_{\text {cos }}^{\text {BQ }}$ \& ${ }_{140}^{422}$ \& \& ${ }_{125}^{276}$ \& （ndp \& 115 \& ${ }_{\text {Other }}^{\text {Other }}$ \& \bigcirc \& ${ }_{\substack{1664 \\ 508}}$ \& ${ }_{\text {CPC }}^{\text {LPC }}$ \& ${ }_{\substack{62060 \\ 65651}}$

\hline Louis saint laurent \& ＋${ }_{40}^{24}$ \& ${ }_{255}^{255}$ \& ${ }_{\substack{\text { False } \\ \text { False }}}^{\text {a }}$ \& ${ }_{\text {crec }}^{\text {CPC }}$ \& ${ }_{\text {12595 }}^{1585}$ \& ${ }_{\text {BQ }}^{\text {BQ }}$ \& | 871 |
| :---: |
| 1582 |
| 18 | \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& 811

1561 \& ${ }_{\text {NDP }}^{\text {NDP }}$ \& \& ${ }_{\text {Other }}^{\text {Other }}$ \& \％ \& ${ }_{\substack{3527 \\ 6588}}$ \& ${ }_{\text {crec }}^{\text {cre }}$ \& ${ }_{6}^{65561}$

\hline Markham stouprille \& ${ }_{40}^{20}$ \& | 2388 |
| :---: |
| 238 | \& ${ }_{\substack{\text { False } \\ \text { False }}}^{\text {cole }}$ \& ${ }_{\substack{\text { LPC } \\ \text { LPC }}}^{\text {cec }}$ \& （1441 \& ${ }_{\substack{\text { cpe } \\ \text { CPC }}}^{\text {cec }}$ \& 1326

2952 \& ${ }_{\text {Other }}^{\text {Other }}$ \& ${ }_{\substack{906 \\ 2164}}$ \& ${ }_{\text {NDP }}^{\text {NDP }}$ \& 222
516 \& ${ }_{\text {Other }}^{\text {Other }}$ \& 0 \& （is95 \& ${ }_{\text {LPC }}^{\text {LpC }}$ \& ${ }_{\substack{64388 \\ 64388}}^{\text {cen }}$

\hline MARkham stourfille \& 150
1
1 \& 238
163
18 \& ${ }_{\substack{\text { False } \\ \text { False }}}^{\text {cole }}$ \& ${ }_{\substack{\text { LPC }}}^{\text {LPC }}$ \& $\underset{\substack{15374 \\ 22}}{ }$ \& $\underset{\substack{\text { CPC } \\ \text { LPC }}}{\text { cec }}$ \& $\underset{\substack{12358 \\ 19}}{ }$ \& $\underset{\substack{\text { Other } \\ \text { NDP }}}{\text { coser }}$ \& ${ }_{97} 9079$ \& ${ }_{\substack{\text { NDP } \\ \text { GPC }}}^{\text {ces }}$ \& ${ }_{24}^{2488}$ \& ${ }_{\text {O }}^{\text {Other }}$ Other \& ${ }_{0}^{0}$ \& ${ }_{52}^{3979}$ \& $\underset{\substack{\text { LPC } \\ \text { LPC }}}{\text { Lec }}$ \& ${ }_{\substack{643888 \\ 34598}}$

\hline Miramich grand latke \& ${ }_{65}^{16}$ \& （103 \& 隹 \& ${ }_{\text {crec }}^{\text {crec }}$ \& ${ }_{\substack{1022 \\ 1027}}$ \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& ${ }_{7311}^{79}$ \& $\underset{\text { GPC }}{\substack{\text { cip }}}$ \& ${ }_{2}^{233}$ \& Nop \& ${ }_{189}^{189}$ \& Other \& \bigcirc \& ${ }_{\substack{\text { 2154 } \\ \\ 9159}}$ \& ${ }_{\text {LPC }}^{\text {LPCC }}$ \& ${ }_{\substack{35598 \\ 3 \\ 34595}}$

\hline MISSION MATSSUU Fraser \& 1 \& 179 \& False \& CPC \& 51 \& NDP \& 28 \& ${ }_{\text {GPC }}$ \& ${ }_{27}$ \& LpC \& 25 \& Other \& 。 \& 131 \& cra \& ${ }_{46066}$

\hline MONCTON CIVERVIIEw \& 5 \& 191 \& False \& LPC \& ${ }^{630}$ \& GPC \& 326 \& CPC \& 292 \& NDP \& 152 \& Other \& 。 \& 1400 \& LPC \& 51828

\hline \& 25 \& 191 \& False \& LPC \& 1972 \& ${ }_{\text {cpe }}$ \& 948 \& GPC \& 838 \& NDP \& 517 \& Other \& 。 \& ${ }^{4275}$ \& LPC \& 51828

\hline \& 50 \& 191 \& False \& LPC \& ${ }^{3736}$ \& cPC \& 2032 \& GPC \& 1607 \& NDP \& 1128 \& Other \& \& 8503 \& LPC \& 51828

\hline $\xrightarrow{\text { dieppe }}$ \& ${ }^{50} 10$ \& ${ }_{211}^{191}$ \& ${ }_{\text {False }}$ False \& ${ }_{\text {bq }}^{\text {LPC }}$ \& 3736
620 \& ${ }_{\text {LPC }}$ \& ${ }_{525}^{2032}$ \& ${ }_{\text {NDP }}$ \& 1607
114 \& ${ }_{\text {cPC }}$ \& ${ }_{105}^{1128}$ \& Other \& \& 8503
1364 \& ${ }_{\text {bq }}$ \& 51828
5928

\hline Montarvile \& ${ }_{105}^{25}$ \& ${ }_{211}^{211}$ \& $\substack{\text { False } \\ \text { False }}$ \& ${ }_{\substack{\mathrm{Ba} \\ \mathrm{BQ}}}$ \& 1805 \& ${ }_{\substack{\text { LpC } \\ \text { LPC }}}^{\text {cec }}$ \& \& $\underbrace{}_{\substack{\text { NDP } \\ \text { NDP }}}$ \& 341
1911
1.0 \& ${ }_{\text {CPC }}^{\text {cre }}$ \& \& ${ }_{\text {Other }}^{\text {Other }}$ \& ${ }_{0}^{0}$ \& \& \& ${ }_{\substack{59228 \\ 59228}}$

\hline Nanamo Ladismith \& \& \& $\substack{\text { Fatse } \\ \text { False } \\ \text { False }}$ \& \& \& ${ }_{\substack{\text { cpe } \\ \text { CPC }}}^{\text {ced }}$ \& （\％837 \& $\underset{\substack{\text { NDP } \\ \text { NDP }}}{\text { coser }}$ \& （683 \& ${ }_{\substack{\text { LPC } \\ \text { LPC }}}^{\text {cec }}$ \& \& $\xrightarrow[\substack{\text { Other } \\ \text { Other }}]{\text { ther }}$ \& \％ \& （izs ${ }_{\substack{2789 \\ 6329}}$ \& $\substack{\text { GpC } \\ \text { GPC }}_{\text {ce }}$ \&

\hline NOTRE Dame de grace \& ${ }_{70}$ \& ${ }_{206}$ \& False \& LpC \& ${ }_{6466}$ \& NDP \& 1817 \& cra \& 1497 \& GPC \& 1089 \& Other \& 。 \& ${ }_{1}^{10869}$ \& ${ }_{\text {LPC }}$ \& 50321

\hline NOUVEAU Breveswick sud \& ${ }^{35}$ \& 180 \& False \& ${ }_{\text {cPC }}$ \& 2981 \& ${ }_{\text {LPC }}$ \& 1756 \& ${ }_{\text {GPC }}$ \& ${ }^{731}$ \& NDP \& 368 \& Other \& 0 \& 5836 \& ${ }_{\text {cPC }}$ \& 39578

\hline Note \& $\stackrel{5}{145}$ \& $\underset{\substack{230 \\ 230}}{ }$ \& $\substack{\text { False } \\ \text { False }}$ \& $\underset{\substack{\text { LPC } \\ \text { LPC }}}{\text { cec }}$ \& ${ }_{\substack{107 \\ \hline 986}}^{207}$ \& ${ }_{\text {CPC }}^{\text {cpC }}$ \& ${ }_{6}^{46}$ \& $\underset{\substack{\text { GPC }}}{\text { dPP }}$ \& 329
289
280 \& $\underset{\substack{\text { Nipp } \\ \text { cip }}}{\text { der }}$ \& ${ }_{\substack{24 \\ 195}}$ \& ${ }_{\substack{\text { Other } \\ \text { Other }}}$ \& \bigcirc \& ${ }_{209}^{2096}$ \& $\xrightarrow{\text { LPC }}$ \& ${ }_{44470}^{4440}$

\hline Nova \& ${ }^{145}$ \& $\underset{\substack{239 \\ 220}}{2}$ \& $\substack{\text { Frase } \\ \text { Fanse }}$ \& ${ }_{\substack{\text { LPCC }}}^{\text {CPC }}$ \& \& ${ }_{\text {crec }}^{\text {LPC }}$ \& ${ }_{\substack{6360 \\ 2668}}^{\text {20，}}$ \& ${ }_{\substack{\text { NPP } \\ \mathrm{GPC}}}^{\text {cem }}$ \& ${ }_{840}^{2894}$ \& ${ }_{\text {crec }}^{\text {GpP }}$ \& ${ }_{763}^{1495}$ \& ${ }_{\text {Other }}^{\text {Other }}$ \& ： \& ${ }_{\substack{20615 \\ 7654}}$ \& ${ }_{\text {CPC }}^{\text {LpC }}$ \& ${ }_{\substack{467798}}^{4440}$

\hline －Nova ouest \& $\underset{70}{155}$ \& ${ }_{250}^{229}$ \& $\substack{\text { False } \\ \text { False }}$ \& $\underset{\substack{\text { crec } \\ \text { LPC }}}{\text { ctic }}$ \& ${ }_{7127}^{11774}$ \& ${ }_{\substack{\text { LpC } \\ \text { NDP }}}^{\text {cep }}$ \& ${ }_{\substack{10457 \\ 4604}}$ \& ${ }_{\substack{\text { crec } \\ \text { CPC }}}^{\text {ce }}$ \& （3507 \& ${ }_{\text {GPC }}^{\text {NDP }}$ \& 2989
1112 \& ${ }_{\text {Other }}^{\text {Other }}$ Other \& \％ \& $\substack{28727 \\ 14834}_{\text {cen }}$ \& \& ${ }_{\substack{46798 \\ 7892}}$

\hline ${ }_{\text {paptineau }}^{\substack{\text { papineau }}}$ \& ${ }_{22}^{1}$ \& ${ }_{197}^{197}$ \& ${ }_{\substack{\text { False } \\ \text { False }}}^{\text {a }}$ \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& 132

2017 \& ${ }_{\text {NDP }}$ \& ${ }_{775}^{20}$ \& ${ }_{\text {BQ }}^{\text {BQ }}$ \& $\underset{544}{14}$ \& ${ }_{\substack{\text { cre } \\ \text { GPC }}}$ \& ${ }_{3}^{12}$ \& ${ }_{\text {Other }}^{\text {Ont }}$ Other \& ： \& | 178 |
| :---: |
| 3691 | \& ${ }_{\text {LPC }}^{\text {LPC }}$ \& $\underbrace{\text { cid }}_{\substack{50781 \\ 50781}}$

\hline Pierre boucher les \& 1 \& ${ }^{227}$ \& False \& ${ }_{\text {LPC }}$ \& ${ }^{21}$ \& вq \& 16 \& ${ }_{\text {GPC }}$ \& 2 \& ${ }^{\text {PPC }}$ \& 2 \& Other \& 。 \& 41 \& ${ }_{\text {Bq }}$ \& ${ }_{60783}$

\hline QUEbEC \& ${ }_{1}^{10} 1$. \& ${ }_{227}^{227}$ \& ${ }_{\text {False }}^{\text {False }}$ \& ${ }_{\substack{\text { LPC } \\ \text { LPC }}}^{\text {cei }}$ \& ${ }_{9992}^{394}$ \& ${ }_{80}^{88}$ \& 186
8723 \& ${ }_{\substack{\text { cre } \\ \text { CPC）}}}^{\text {cec }}$ \& ¢ 86 \& ${ }_{\text {NDP }}^{\text {NDP }}$ \& 13
3350 \& ${ }_{\text {Other }}^{\text {Other }}$ \& ${ }_{0}$ \& ${ }_{265645}^{679}$ \& ${ }_{\text {LPC }}^{\text {LpC }}$ \& ${ }_{\substack{54198 \\ 54198}}$

\hline Quebec \& 216
224
224 \& ${ }_{\substack{227 \\ 227}}^{227}$ \& \& ${ }_{\substack{\text { LpC } \\ \text { LPC }}}^{\text {cec }}$ \& 14842
17014
10 \& ${ }_{\text {BR }}^{\text {BQ }}$ \& ${ }_{\substack{14394 \\ 16867}}^{19}$ \& \& ${ }_{\substack{6867 \\ 789}}^{\text {cid }}$ \& NDP \& \& ${ }_{\text {Other }}^{\text {Other }}$ Other \& \％ \& ${ }_{\substack{41483 \\ 47647}}^{\text {4，}}$ \& ${ }_{\substack{\text { LpC } \\ \text { LPC }}}^{\text {cec }}$ \&

\hline Regina quappelle \& 1 \& ${ }_{1}^{267}$ \& $\xrightarrow{\text { Fatase }}$ \& ${ }_{\text {Cre }}$ \& ${ }_{91}$ \& ${ }_{\text {ctec }}^{\text {LPC }}$ \& 119 \& ${ }_{\text {NDP }}^{\text {NT }}$ \& ${ }^{10}$ \& $\underset{\text { GPC }}{ }$ \& ， \& Other \& \％ \& ${ }_{1}^{113}$ \& ${ }_{\text {CPC }}$ \&

\hline REGINA Q APPELLE \& | 19 |
| :---: |
| 11 |
| 11 |
| 0 | \& | 167 |
| :---: |
| 1.14 |
| 141 |
| 1 | \& \& $\underset{\substack{\text { crec } \\ \text { CPC }}}{\text { cre }}$ \& （ \& \& \& $\underset{\substack{\text { LpC } \\ \text { NTP }}}{\text { Nop }}$ \& \& （trec \& \& $\xrightarrow{\text { Other }}$ Other \& ： \& （inci \& （crec \&

\hline Richmond arthabaska \& ${ }_{1}^{98}$ \& ${ }_{1}^{141}$ \& ${ }_{\substack{\text { Far } \\ \text { False }}}^{\text {Fals }}$ \& ${ }_{\text {coic }}^{\text {LPC }}$ \& ${ }_{\substack{10928 \\ 74}}$ \& ${ }_{\text {cre }}^{\text {LpC }}$ \& ${ }_{42}^{7332}$ \& ${ }_{\text {BQ }}$ \& ${ }_{31}^{3016}$ \& \& ${ }_{5}^{664}$ \& $\underset{\substack{\text { Other } \\ \text { Other }}}{\text { Oter }}$ \& ： \& ${ }_{152}^{21940}$ \& ${ }_{\substack{\text { cpe } \\ \text { CPC }}}$ \& ${ }_{588385}^{45355}$

\hline
\end{tabular}

Constituency	Boxes Counted	Total Boxes	RDI Elected	First	First Count	Second	Second Count	Third	Third Count	Fourth	Fourth Count	Fifth	Fifth Count	Total Votes	End Winner	End Total Votes
RICHMOND ARThabaska RICHMOND Arthabaska	${ }_{25}^{5}$	${ }_{270}^{270}$	$\underbrace{\text { ate }}_{\substack{\text { False } \\ \text { False }}}$	$\underset{\substack{\text { cre } \\ \text { cre }}}{\text { ct }}$	${ }_{\substack{266 \\ 1433}}$	${ }_{\text {BQ }}^{\text {BQ }}$	${ }_{913}^{194}$	$\underset{\substack{\text { LpC } \\ \text { LPC }}}{\text { ded }}$	${ }_{727}^{181}$	${ }_{\text {GPC }}^{\text {GPC }}$	${ }_{192}^{48}$	$\underset{\substack{\text { Other } \\ \text { Oher }}}{ }$	${ }_{0}^{\circ}$	${ }_{\substack{689 \\ 3265}}^{\text {ate }}$	$\underset{\substack{\text { cpe } \\ \text { CPC }}}{\text { ct }}$	$\underbrace{}_{\substack{58838 \\ 58638}}$
RICHMOND ARTHAbaska	${ }_{45}^{25}$	${ }_{270}$	${ }_{\text {Palse }}^{\text {Palse }}$	${ }_{\text {cra }}$	${ }_{2979}^{1293}$	${ }_{B Q}$	${ }_{1850}$	${ }_{\text {LPC }}^{\text {Lec }}$	${ }_{125}^{127}$	${ }_{\text {GPC }}$	${ }_{369}^{192}$	${ }_{\text {Oter }}^{\text {Other }}$	\bigcirc	${ }_{\substack{3205 \\ 635}}$	${ }_{\text {CPC }}$	${ }_{\text {ckess }}^{56858}$
	1	${ }^{220}$	False	${ }^{\text {LPC }}$	${ }^{3}$	${ }^{\text {BQ }}$	${ }^{13}$	${ }^{\text {cpa }}$	9	NDP	${ }^{4}$	Other	－	59	${ }^{B Q}$	45767
mimouski neigette	145	220	False	BQ	10266	NDP	7719	${ }_{\text {LpC }}$	5853	cPC	${ }^{2123}$	Other	0	25961	BQ	45767
Rivirie des milie iles	${ }^{150}$	${ }_{227}^{227}$	False	${ }^{\text {B0 }}$	${ }_{11570}^{1150}$	${ }_{\text {LPC }}^{\text {Lp }}$	（10360	${ }_{\text {NDP }}^{\text {CPC }}$	${ }^{25588} 4$	$\underset{\substack{\text { cpe } \\ \text { NDP }}}{\text { coser }}$	${ }_{\substack{2278 \\ 332}}$	${ }_{\text {Other }}^{\text {Other }}$	\bigcirc	26766	${ }^{\text {Ba }}$	58184 6101 601
RIVIERE du RIVIERE DU Nord Nord	90 ${ }_{90}$	${ }_{272}^{272}$	${ }_{\substack{\text { False } \\ \text { False }}}^{\text {ate }}$	${ }_{\text {BR }}^{\text {BQ }}$	${ }_{7177}^{2021}$	${ }_{\text {LPC }}^{\text {LpC }}$	（1003	$\underset{\text { cpC }}{\text { cre }}$	${ }_{1634}^{453}$	${ }_{\text {NDP }}^{\text {NDP }}$	332 1109	$\underset{\substack{\text { Other } \\ \text { Other }}}{ }$	${ }_{0}^{0}$	${ }_{\substack{3809 \\ 13007}}$	${ }_{88}^{\mathrm{BQ}}$	$\xrightarrow[\substack{60101 \\ 60101}]{ }$
rosemont pataie petite	1	${ }^{223}$	False	LPC	${ }^{30}$	${ }^{8 Q}$	5	nDP	4	Other	2	Other	－	${ }_{41}$	NDP	60206
Rosemont patrie petite	11	${ }^{223}$	False	NDP	1192	LpC	${ }_{613}$	${ }_{\text {BQ }}$	589	${ }_{\text {GPC }}$	168	Other	0	2562	NDP	${ }_{60206}$
Rosemont patar petite	75	${ }^{223}$	False	${ }^{\text {ndp }}$	7697	${ }_{\text {Lpc }}$	${ }_{425}$	${ }_{8 Q}$	${ }_{4291}$	${ }_{\text {GPC }}$	1088	Other	0	17501	NDP	${ }_{60206}$
SAANICH GULI SISANDS	${ }_{35}^{2}$	${ }_{238}^{2388}$	False	${ }_{\text {crac }}^{\text {cra }}$	88	${ }_{\text {LPC }}^{\text {LPC }}$		${ }_{\text {cpe }}^{\text {cpe }}$	${ }_{\text {cosem }}^{54}$	Nop	${ }_{7}^{18}$	Other	\bigcirc	${ }_{\substack{218 \\ 5880}}$	${ }_{\text {crec }}^{\text {GpC }}$	
	${ }_{1}^{15}$	${ }_{2}^{247}$	${ }_{\substack{\text { Frase } \\ \text { Fatse }}}^{\text {rabe }}$	${ }_{\text {coi }}^{\text {BPC }}$	${ }_{\substack{2848 \\ 118}}$	${ }_{\substack{\text { crec } \\ \text { LPC }}}^{\text {LPC }}$	1250	${ }_{\substack{\text { cpC }}}^{\text {cpe }}$		NDP	${ }_{43}$	${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}^{\circ}$	${ }^{5856}$	${ }_{\text {BR }}^{\text {cre }}$	${ }_{\substack{685150 \\ 55954}}$
	${ }^{55}$	${ }_{256}^{247}$	${ }_{\substack{\text { Fralse } \\ \text { Fulse }}}^{\text {a }}$	${ }_{\text {BQ }}^{\text {BQ }}$	${ }_{\text {4，}}^{42807}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{\substack{2369 \\ 9097}}^{2}$		${ }_{\substack{11995 \\ 3136}}$	$\underset{\substack{\text { cpe } \\ \text { NDP }}}{ }$		Other Other	－	${ }_{\substack{10673 \\ 27049}}$	${ }_{\text {BR }}^{\text {BQ }}$	
SAINT John rothesay	${ }_{5}^{3}$	${ }_{\text {l }}^{178}$	$\underbrace{\text { ate }}_{\substack{\text { Frase } \\ \text { False }}}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{\substack{116 \\ 238}}^{10}$	${ }_{\text {cpe }}^{\text {cpe }}$	\％ 794	${ }_{\text {CPC }}^{\text {CPC }}$	${ }_{55}^{19}$	${ }_{\text {pre }}^{\text {NDP }}$	18 14	${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}^{0}$	${ }_{451}^{232} 4$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{\substack{41253 \\ 5814}}$
SAINT Mavrice champlain	${ }_{90}^{210}$	（ess	${ }_{\substack{\text { False } \\ \text { False }}}^{\text {ate }}$	${ }_{\text {cip }}^{\text {LPC }}$	（123530	${ }_{\text {LPC }}^{\text {BQ }}$	$\substack{11812 \\ 8830}_{\text {cen }}$	${ }_{\text {CPC }}^{\text {CPC }}$	5629 2864	${ }_{\text {NDP }}^{\text {NDP }}$	1910 2126	${ }_{\text {Other }}^{\text {Other }}$	\％	${ }_{\substack{32281 \\ 27393}}$	${ }_{\text {LPC }}^{\text {LPC }}$	
	${ }_{\text {228 }}^{220}$	${ }_{271}^{271}$	$\substack{\text { False } \\ \text { False }}$	${ }_{\text {BO }}^{\text {BO }}$	${ }_{22752}^{17216}$	${ }_{\substack{\text { LpC } \\ \text { LPC }}}^{\text {cem }}$	${ }_{\substack{16266 \\ 21647}}^{\substack{164}}$	${ }_{\text {cpC }}^{\text {CPC }}$	${ }_{\substack{5348 \\ 7245}}^{\text {724 }}$	NDP	－	${ }_{\text {Other }}^{\text {Other }}$	\％	${ }_{55293}^{41574}$	${ }_{\text {BQ }}^{\text {BR }}$	（60913
	${ }_{195}^{95}$	261 261 261	$\substack{\text { Frase } \\ \text { False }}$	${ }_{\substack{\text { LPC } \\ \text { LPC }}}^{\text {ced }}$	${ }_{\substack{4151 \\ 6122}}$	（in		${ }^{\text {BQ }}$	（3227	${ }_{\text {cpe }}^{\text {CPC }}$		Other	：	${ }_{\substack{12292 \\ \text { 22037 }}}^{\text {20037 }}$		
${ }_{\text {Sherbrbooke }}^{\text {ster }}$	$\underset{\substack{204 \\ 208}}{ }$	${ }_{261}^{261}$	${ }_{\text {che }}^{\text {False }}$	$\underset{\sim}{\text { NDP }}$	${ }_{\text {cone }}^{10072}$	$\underset{\text { Lpc }}{\text { Lpp }}$	${ }_{\substack{10014 \\ 1020}}$	${ }_{\text {BL }}$	${ }_{\substack{8923 \\ 9823}}$	${ }_{\text {cpe }}^{\text {cpe }}$	3462	Other	\％	${ }_{32471}^{32031}$	$\xrightarrow{\text { LpC }}$	${ }_{\substack{59726 \\ 50726}}$
	${ }_{255}^{220}$	${ }_{261}^{261}$		${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{15845}^{11291}$	NDP	${ }_{15388}^{11105}$	${ }_{\text {BQ }}^{\text {BQ }}$	${ }_{\substack{9823 \\ 1400}}$	${ }_{\text {crec }}^{\text {CPC }}$	（is69	Other Other	${ }_{0}$	${ }_{\substack{36049 \\ 50879}}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{\substack{59726 \\ 59726}}$
south shore st． MARGARETS	5	260	False	cPC	170	${ }_{\text {LpC }}$	153	nDP	52	${ }_{\text {GPC }}$	${ }^{25}$	Other	。	400	${ }_{\text {LpC }}$	52518
South shore st．	100	${ }^{260}$	False	LPC	7974	${ }_{\text {cpe }}$	5458	ndp	3081	${ }_{\text {GPC }}$	2156	Other	0	18669	Lpc	52518
ST．Johns EsT	${ }_{15}^{15}$	188 182 188	$\underset{\substack{\text { False } \\ \text { False }}}{\text { cole }}$	NDP	${ }_{\substack{50 \\ 1145}}$	${ }_{\substack{\text { cpe } \\ \text { LPC }}}^{\text {cer }}$	${ }_{867}^{41}$	${ }_{\text {CPC }}^{\text {LpC }}$	${ }_{536}^{29}$	${ }_{\substack{\text { GpC } \\ \text { GPC }}}^{\text {cec }}$	${ }_{42}^{1}$	${ }_{\text {Ofter }}^{\text {Other }}$	\％	121 2590	${ }_{\text {NDP }}^{\text {NDP }}$	${ }_{4}^{45072} 4$
ST．SoHN S EST	${ }_{50}^{15}$	${ }_{182}^{182}$	$\underset{\substack{\text { Frase } \\ \text { False }}}{\text { cel }}$	NDP	${ }_{454}^{1145}$	${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{\substack{867 \\ 3148}}^{\text {che }}$	$\mathrm{cec}_{\text {CPC }}^{\text {cec }}$	${ }_{\substack{536 \\ 1757}}$	${ }_{\text {GPC }}^{\text {GPC }}$	${ }_{157}^{42}$	$\underset{\substack{\text { Other } \\ \text { Other }}}{\text { On }}$	${ }_{0}^{\circ}$	${ }_{9516}^{2590}$	${ }_{\text {NDP }}$	${ }_{45072}^{45072}$
ST．Johns sis imd mount	29	185	False	LpC	2567	NDP	1650	cPC	${ }^{786}$	grc	${ }^{90}$	Other	。	5093	${ }_{\text {LpC }}$	40666
St．Johnvesisud mount	${ }^{30}$	185	False	${ }_{\text {Lpc }}$	2816	nDp	1743	${ }_{\text {cpa }}$	895	$\mathrm{grc}^{\text {a }}$	${ }_{96}$	Other	。	5550	${ }_{\text {LpC }}$	${ }_{40666}$
SYDNEY YICToria	130 1 1	196 184 184	${ }_{\text {F }}^{\substack{\text { False } \\ \text { False }}}$	${ }_{\substack{\text { crc } \\ \text { CPC }}}^{\text {cec }}$	7193 17	${ }_{\text {LPC }}^{\text {LpC }}$	7048 10		$\underset{\substack{5053 \\ 4}}{ }$	¢	3962 1	${ }_{\text {Other }}^{\text {Other }}$	${ }^{\circ}$	${ }_{32}^{2356}$	${ }_{\substack{\text { LpC } \\ \text { CPC }}}^{\text {cec }}$	${ }_{\substack{40565 \\ 38201}}^{4}$
	30 95	$\underset{\substack{184 \\ 257}}{128}$	$\substack{\text { Fase } \\ \text { False } \\ \text { False }}$	$\underset{\substack{\text { crac } \\ \text { LPC }}}{\text { ct }}$	${ }_{\substack{2273 \\ 7748}}^{\substack{\text { che }}}$	$\underbrace{\text { Lec }}_{\substack{\text { LpC } \\ \text { NDP }}}$			${ }_{\substack{460 \\ 1665}}^{1}$		$\underset{\substack{261 \\ 959}}{ }$	Other Other	：	${ }_{\substack{3813 \\ 13633}}$	${ }_{\substack{\text { crec } \\ \text { LPC }}}^{\text {coin }}$	
Trions rivicres	a3 125 125		$\substack{\text { Patse } \\ \text { False } \\ \text { False }}$	$\underset{\substack{\text { BQ } \\ \text { BQ }}}{\text { cic }}$	$\substack{777 \\ 5083}$		3201 $\substack{7980 \\ 498}$	$\underset{\substack{\text { CPC } \\ \text { CPC }}}{\text { cer }}$		（ive		Other Other Other	\％			
Triols riviries	$\underset{ }{220}$					${ }_{\substack{\text { LPC } \\ \text { LPC }}}^{\text {Lec }}$	${ }_{\text {coin }}^{120811}$	CPC	${ }_{\text {ckisf }}^{1054}$	$\underset{\text { NDP }}{\text { NPC }}$	${ }_{\substack{7539 \\ \hline 59}}^{2999}$	Other	\％	${ }_{\text {43972 }}^{47878}$	${ }_{\text {co }}^{\text {Ba }}$	
VANCOUVER GRANVILLE	${ }_{8}^{27}$	${ }_{205}^{2005}$		${ }_{\text {LPC }}^{\text {LPC }}$	${ }_{1}^{259}$	${ }_{\text {Other }}$	${ }_{1216}$	NDP	${ }_{98}$	${ }_{\text {cre }}$	${ }_{85} 85$	Other	\bigcirc	${ }_{488}$	${ }_{\text {Ind }}^{\text {Lnce }}$	${ }_{\substack{53393 \\ 583}}^{503}$
VANCOUVER GRANVILLE	${ }_{77}^{50}$	${ }_{205}^{205}$		$\underset{\substack{\text { Other } \\ \text { Other }}}{\text { tor }}$	－ 1959	${ }_{\text {cpe }}^{\text {cpe }}$	${ }_{3}^{1949}$	${ }_{\text {LPC }}^{\text {LPC }}$	（1836	NDP	${ }_{\substack{1086 \\ 1075}}^{\text {cen }}$	Other Other	－	${ }_{\substack{6823 \\ 11149}}$	$\underset{\substack{\text { Ind } \\ \text { Ind }}}{\text { In }}$	${ }_{\substack{53032 \\ 53032}}^{503}$
ancouver granville winNipmg centre	${ }_{85}^{175}$	${ }_{175}^{205}$		$\underset{\text { CPC }}{\text { Other }}$	（9749	${ }_{\text {NDP }}^{\text {LpC }}$	${ }_{\substack{8361 \\ 4976}}^{\text {4，}}$	$\underset{\substack{\text { cpC } \\ \text { LPC }}}{ }$	${ }_{\substack{7100 \\ 4474}}$	${ }_{\text {CPC }}$	${ }_{\substack{4646 \\ 2435}}$	${ }_{\text {Other }}^{\text {Other }}$	${ }_{0}^{0}$	${ }_{2}^{2994569}$		$\underset{\substack{53032 \\ 31724}}{\substack{\text { a }}}$

[^0]: ${ }^{1}$ From my observations, Radio-Canada never displays more than the top five candidates. Furthermore, the candidates not shown by Radio-Canada probably have so little votes that they would have little to no impact on the final results.

[^1]: ${ }^{2}$ For federal elections, due to the large timezone differences, the results of some of the Eastern provinces are compiled before polls close in some of the Western provinces. However, there is, overall, very little overlap.

[^2]: ${ }^{3}$ A uniform distribution is a distribution where all values in a given interval (in this case, $[0,1]$) are equally likely.
 ${ }^{4} \mathrm{~A}$ deeper exploration of the regularized and incomplete beta functions not being relevant to the rest of the mathematics, I will not explore them in greater details.

[^3]: ${ }^{5}$ Here, m is used instead of the typical n in order to avoid confusion with the number of candidates in the constituency.

[^4]: ${ }^{6}$ A justification for Bayes' theorem has been deemed outside of the scope of this investigation.

[^5]: ${ }^{7}$ This assumption will be revisited in Section 4.7.
 ${ }^{8}$ As we are working with continuous distributions, $P\left(D_{k} \leq r\right)$ is equivalent to $P\left(D_{k}<r\right)$.

[^6]: ${ }^{9}$ Adding the numbers displayed here leads to finding 1.00001 as the sum instead. This deviation is simply due to the fact that the numbers were calculated with more significant figures than displayed here.

[^7]: ${ }^{10}$ Although it originally came from a mathematics discussion forum, I believe I have provided a sufficient justification for this formula.

[^8]: ${ }^{11}$ Here, m is used instead of the typical n in order to avoid confusion with the number of candidates in the constituency.

[^9]: ${ }^{12}$ Although there are functions that behave oddly at non-integer values, the above expression works as we would expect a continuous interpolation to do. This is shown later in Figure 13.

[^10]: $\overline{{ }^{13} \text { For the sake of brevity, the following steps will be a simple }}$ attempt at optimizing this parameter. However, a more rigorous and complete working of the optimal value would make a most interesting extension to this paper.

[^11]: ${ }^{14}$ Although a quantitative way to handle these error sources would be most helpful, such a thing has been deemed outside of the scope of the investigation.
 ${ }^{15}$ Smaller values of S have less random points, as they are much more expansive to calculate.

