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1. Introduction

For as long as I can remember, I have been fascinated
by politics, from the power dynamics that have shaped
recent history to the magnificent system in which we
live, a democracy. Although democracies are not
without their flaws, particularly when we consider
the current voting system used in Canada, they are
arguably the best political system ever created by
mankind.

An highly interesting event that results from a demo-
cratic election is the night right after where the nation
awaits for the final results, slowly receiving updates
for the current ballots count for different constituen-
cies. While this is happening, news agencies are trying
to use their current data to predict the final results.
This process of highly confidently predicting the final
results of constantly updating data while trying to
make that prediction as soon as possible has long been
a source of interrogation for me. Impressively, news
agencies are ridiculously fast at forming their predic-
tions, like when Radio-Canada successfully predicted
that the Coalition Avenir Québec would form a ma-
jority government less than 11 minutes after results
started to come in for the Québec 2022 election [15].
Furthermore, although they occasionally make wrong
predictions [8], this is exceedingly rare.

In short, I started to wonder about how news agen-
cies could be so fast and so accurate. This paper will
be my attempt at building a model to make electoral
predictions, so that I can better understand the seem-
ingly magical tools that are used. It is to be noted
that my goal here is not to reverse engineer how exist-
ing systems work, as I do not have access to the same
data that news agencies have. I will instead try to
build a simple tool that would allow anyone to simply
insert the current ballot counts in their constituency
and see the probability that each of the candidates
has to win.

The model will based on the “first-past-the-post”
election system used in provincial and federal elections
in Canada. The Canadian electoral systems generally
work in the following way:

1. The territory is divided in smaller districts of

similar size in terms of population called con-
stituencies.

2. During the elections, electors can go cast a vote
for their single favorite candidate in their con-
stituency. Each vote will go in a box. Each con-
stituency has multiple boxes of an approximately
fixed number of votes.

3. Once all the votes have been gathered, the vote
start to be released. This phase can take multiple
hours, due to the long process of counting every
vote.

4. The results are released box by box.
To verify the accuracy of my model, I will need to

compare it to past election data. The data I chose
to collect was sampled from Quebecois, Ontarian and
Canadian elections (at the provincial or federal level)
from the past few years, since those are the elections
I have most interacted with, as a Quebecer currently
living in Ontario.

Out of all the possible ways to approach such a
problem, the one I found the most interesting was
to model the situation as a conditional probability
problem, as it is a very theorical approach and I was
curious to know if it could accurately represent the
real world. Other approaches, such as regression or hy-
pothesis testing, would be quite interesting extensions
to this paper.

2. Collecting Real-World Data

Before trying to model the situation, we should first
gather past data, so that we can test the model with
real-world examples while developping it. As we are
interested in the partial results (while the ballots are
still being counted) of past elections instead of the
final results, there is not much publicly available data.
Fortunately, Radio-Canada has public archives of all
the election nights they streamed on YouTube over
the last few years.

This means that we can look at every time a con-
stituency was shown on screen and record the current
ballot counts, as well as the number of boxes counted
versus the total number of boxes in the constituency.
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DRAFTFigure 1: A sample frame from Radio-Canada’s
presentation of the 2021 federal election [13]

Then, using public records, we can also note which
of the candidates really won in the end. Here are the
elections I chose to gather data from:

• Canada (Federal), 2019; Sources: [2], [12]
• Canada (Federal), 2021; Sources: [2], [13]
• Ontario (Provincial), 2022; Sources: [3], [14]
• Quebec (Provincial), 2022; Sources: [4], [15]

At first, I attempted to collect the data by hand,
with custom software to assist me in the menial task.
However, I realized that this endeavour would know no
ends and that I had to find a better solution. This lead
me to fully automate the task using a mix of optical
character recognition (OCR) and of color recognition.
Although the OCR was not always perfect, my code
had several failchecks to make sure the collected data
was as reliable as possible. Here are a few caveats
about the data collection:

• Only the candidates shown by Radio-Canada are
counted. To match this, when looking up the
end total vote count, only the top five candidates
were considered.1

• The OCR could only capture the frames where
the data was shown in full screen, which means
not all data points were captured.

The full dataset is available in Appendix A.

1From my observations, Radio-Canada never displays more
than the top five candidates. Furthermore, the candidates
not shown by Radio-Canada probably have so little votes
that they would have little to no impact on the final results.

3. Analyzing the Data
In the end, the full dataset is 603 rows long and
contains data from 228 different constituencies. Here
are a few interesting metrics from it vizualized:

Figure 2: Distribution of the final total vote counts
Figure 2 shows how the total number of votes in a

constituency at the end of the election is distributed
as an histogram. In orange, we can see how many
constituencies reside in each bin. The blue curve
shows a normal distribution with the mean and stan-
dard deviation of the data (mean of µ ≈ 43 476 and
standard deviation of σ ≈ 13 106), showing that the
end total vote count seems to be somewhat normally
distributed. This information may come in helpful
to evaluate the model, as we should clear prioritize
accuracy for constituencies with approximately 40 000
voters.

Figure 3: Distribution of the percentages of votes
counted

In Figure 3, we can see how the data points are
distributed in terms of the percentage of votes that
were counted at the moment they were shown by
Radio-Canada. We can notice how the vast majority
of the data was captured when not many votes had
been counted. Once again, in the spirit of building
a model to help election-night watchers predict the
probability that a certain candidate will be elected,
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this means that we should prioritize the accuracy of
our model for low quantities of votes counted.

To compare our statistical model to real-world data,
a plot showing the probability of being elected based
on the collected data will be quite useful. However,
it is impossible to show all the useful dimensions of
our data (the vote count for each of the candidates
and the percentage of votes counted) in a single plot,
as this would require a 7-dimensional graph (6 for
the independent variables and 1 for the dependent
variable). Therefore, we need a way to group some
of these axes together. The solution I found to this
problem is to use the percentage of votes counted and
the percentage lead of the leading candidate as axes,
as these are arguably the two main intuitive factors
when trying to predict if the leading candidate will
be elected.

Figure 4: Plot of the collected data

Figure 4 shows exactly this. It was built by first
plotting all 603 data points on a plot with the axes
described above. These points were then coloured
based on wether or not the leading candidate was
elected in the end (blue if elected, red if not). The axes
where then separated into 6 segments each, creating
36 bins. Finally, the bins were coloured based on
the ratio of blue points (situations where the lead
won) over the total number of points (total number
of situations). For example, if in the upper left bin,
there are 28 points, with only one red. This means
that out of 28 observed situations with 0 % to 10 %

of votes counted and 90 % to 100 % lead, only once
did the leading candidate not win. The probability
of the leading candidate winning if the situation is in
that bin is therefore 27

28 ≈ 0.9643, which means the
bin will be yellow. The cells that do not contain any
points were left white.

This makes this plot a two dimensional histogram
of the probability of a lead candidate winning if it
lands in a specific bin. So that they can be visually
compared, all graphs of this type throughout this
exploration will use the same colour scale.

However, we need to keep in mind that the axes used
here are not a direct representation of our original data.
Our representation taking only the relative difference
of the first and second candidate into account, the
plot assumes that all the other factors average out.
Therefore, it is only reliable when many data points
are in bin, which explains why there is some random
variation in the colors of the graph. This random
variation introduces a source of error when working
with our data: the size of the bins (derived from the
number of bins) can change the trends we see. The
number 36 was chosen here as a tradeoff between
having enough bins to observe trends, while having
each bin contain quite a few points.

As we can see, for very low percentages of votes
counted, there is quite a bit of random variation in
the probability of being elected. However, as the per-
centage of votes and the percentage of lead increases,
the probability of the lead being elected increases, just
as we would naturally expect. This is represented by
the graph being more and more yellow toward the
top-right corner.

4. Building the Model

As with any mathematical problem, a considerable
portion of building the model is simply to lay down
our assumptions and to split the task into multiple,
more specific, problems. To approach this using the
tools of conditional probability, we first need to un-
derstand why predicting election results even involves
random events. The fundamental assumption we need
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to do here, from which all of the mathematics will
follow, is that we can consider each individual casting
its vote as an independent random event were the dif-
ferent possibilities are the different candidates in the
constituency, with each candidate having a different
probability of receiving a vote.

Let’s unpack this. Essentially, we can imagine that
the probability that a voter will vote for a given candi-
date is the final proportion of votes that that candidate
will have received in the final results. Furthermore,
each vote would be independent of the other ones, be-
cause election results aren’t shown until every polling
booth is closed.2

Let’s start by defining a few variables. Let n be the
number of candidates in the constituency.

Let v = {v1, v2, v3, . . . , vn} be the set of the current
vote counts for the different candidates, ordered from
largest to smallest, where v1 is the number of votes for
candidate 1, v2 is the number of votes for candidate
2, etc. And let vt =

∑n
i=1 vi be the total number of

votes.
Also, let bc be the number of ballot boxes counted

and bt be the total number of ballot boxes.
The number of votes left to be counted will also be

relevant (if only a few votes are left to be counted,
the probability of the lead candidate being elected
will be much higher), but it is not a number known in
advance. However, we can approximate it by assuming
the number of votes per ballot box is roughly constant.
Therefore, let ve = bt

bc
vt be the expected end total

number of votes, and let vl = ve − vt be the expected
number of votes left to count.

In general, when discussing a certain candidate, I
will refer to it as the kth-candidate. For example, I
consider the candidate k to currently have vk votes.

As we are working with conditional probability,
our beliefs about the probability each candidate has
to win will be most often represented by probability
distributions. This idea will be detailed below, notably
in Section 4.1.

2For federal elections, due to the large timezone differences,
the results of some of the Eastern provinces are compiled
before polls close in some of the Western provinces. However,
there is, overall, very little overlap.

Through this paper, our first goal will be to rep-
resent the likelihood of observing the evidence we
have (the current number of votes) as a function (Sec-
tion 4.3) and to represent our prior beliefs (what we
thought before observing any data about the chances
that each candidate has to win) as a probability distri-
bution (Section 4.4). We will then be able to combine
those two pieces of information through the use of
Baye’s theorem, which will give us a probability dis-
tribution representing the probability that a certain
candidate will have a certain share of the final votes,
assuming the election contains infinitely many votes
(Section 4.5). Finally, using this and the number of
votes left to be counted, we will be able to generate a
probability distribution representing the expected fi-
nal number of votes for a given candidate (Section 4.7).
This will give us all the information we need to com-
pute the probability that each of the candidates has
to win over the others.

Therefore, we will have D = {D1, D2, D3, . . . , Dn}
be the list of the unknown probability distributions
representing the probability that a certain candidate
will have a certain share of the votes, where D1 is the
probability distribution for the candidate 1, D2 for
the candidate 2, etc.

Finally, E = {E1, E2, E3, . . . , En} will represent the
list of probability distributions for the final expected
number of votes, where E1 is the distribution for the
candidate 1, E2 for the candidate 2, etc.

Although the sets D and E may look quite cryptic
for now, their meaning and utility will become much
clearer through the rest of this paper.

Due to the usefulness of specific, visual examples
when trying to investigate probability questions, let’s
use the following variables as a simple and concrete
example:

n = 5

v = {60, 50, 36, 34, 20}

vt = 60 + 50 + 36 + 34 + 20 = 200

bc = 10

bt = 16
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ve = 16

10(200) = 320

vl = 320 − 200 = 120

This means that we will be looking at a 5 candidates
election (n), where the the leading candidate currently
has 60 votes (v1). Out of the 16 boxes in the con-
stituency (bt), 10 have been opened (bc), which allows
us to predict that there will be around 320 votes in
the end (ve), based on the 200 we currently have (vt).

Although this set of data will be used for numerical
and graphical example, this paper will not focus on
the computation of specific numerical examples, as
the endgoal is to have a generalized computer model.
Furthermore, due to their nature, many of the com-
putations discussed here have no analytical solutions,
which is why computer based approximations will be
favoured.

4.1. Probability of probabilities

A reccurant theme in this paper will be the idea of
probability of probabilities. Although this may seem
like an utterly nonsensical statement at first, it is
actually at the root of many advanced concepts in
conditional probability. In order to explore this idea,
let’s use an example situation.

Considering a biased coin whose mathematical
weight (bias) is unknown, after observing 90 heads
and 10 tails out of 100 trials, what should we expect
the bias to be?

One might argue that the answer is trivial: to find
the weight, we divide the number of observed heads
(or tails) by the number of throws. This goes with the
idea of the Law of large numbers [26] that the more
trials we observe, the more the observed frequency
will approach the theorical (the real) probability.

However, I would argue that this reasoning is flawed.
Yes, 90

100 = 0.9 is the most likely probability, but it is
possible that the true probability is 0.1, 0.99 or any
other value between 0 and 1, exclusively. An event
being unlikely does not mean it is impossible.

The better approach is therefore to use probability
distributions: instead of trying to define the weight

of the coin with a single number, we can define a
probability distribution that represents how likely
each of the infinitely many possible values of the bias
are. That probability distribution would most likely
be a beta distribution, which we will explore below.

4.2. Understanding the Beta Distribution

As we will heavily rely on it, it is important that we
understand the beta distribution. Two reasons make
it ideal for representing probability of probabilities:
its domain is [0, 1] and the area under a beta dis-
tribution’s Probability Density Function (PDF) over
its range is 1. This means that any value on the
x-axis represents a possible probability and that the
y-value of the distribution at that point represents
the probability density that that probability is the
true one.

Furthermore, the beta distribution can take a vari-
ety of shapes, as its PDF is, most commonly, defined
in terms of two shape parameters, α and β, both being
positive non-null real numbers. It’s definition is based
on the beta function, here called B [21]. Let’s define
a distribution X such that X ∼ Be(α, β), where Be
is the beta distribution.

P (X = x) = xα−1(1 − x)β−1

B(α, β) , x ∈ [0, 1]

In the definition of the PDF of the beta distribution,
B is the beta function. Dividing by the beta function
has the effect of scaling the numerator in order to make
the area under the beta distribution’s PDF equal to 1.
It is therefore equal to the integral of the numerator.

B =
∫ 1

0
xα−1(1 − x)β−1 dx

However, it is more commonly defined as follows,
where Γ is the gamma function [22]:

B(α, β) = Γ(α)Γ(β)
Γ(α + β)

This distribution would have a mean of [21]:

E(X) = µX = α

α + β

5
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Finally, the gamma function can be viewed as an

expansion of the factorials to the Reals (except for
integers smaller or equal to 0) while respecting the
following identity [24], n being a positive integer, (a
more detailed explanation of the gamma function has
been deemed outside of the scope of this investigation):

Γ(n) = (n − 1)!

The beta distribution will be refered to as Be(α, β)
throughout this paper. Here are a few beta distri-
butions plotted, demonstrating some of the various
shapes it can take:

Figure 5: A few beta distributions

In Figure 5, we can see multiple interesting things,
notably that a Be(1, 1) distribution is equivalent to
a Uniform(0, 1) distribution [28]3 and that the beta
distribution can be both symmetric and highly asym-
metric about the average.

Finally, the Cumulative Distribution Function [18]
(CDF) of a beta distribution is the regularized beta
function [27], notated I(z; a, b), which is in itself ex-
pressed in terms of the incomplete beta function [25],
notated B(z; a, b).4

P (A ≤ z) = I(z; α, β) = B(z; α, β)
B(α, β)

Now that we understand the beta distribution, we
can go back to building the model.

3A uniform distribution is a distribution where all values in a
given interval (in this case, [0, 1]) are equally likely.

4A deeper exploration of the regularized and incomplete beta
functions not being relevant to the rest of the mathematics,
I will not explore them in greater details.

4.3. Building the Likelihood Function

The first step is to figure out the probability distri-
bution representing the share of votes each candidate
has.

Seeing this from the persepective of each of the can-
didates, we can consider the number of votes received
over the total number of votes as a binomial exper-
iment, where a success is defined as a vote for that
candidate and a failure as a vote given to any other.
As a reminder, the Probability Mass Function [11]
(PMF), the discrete analogue of the PDF [11], for
a binomial distribution Y , Y ∼ B(m, p)5, would be
the following, where p is the probability of the event
happening and m is the total number of trials:

P (Y = x) =
(

m

x

)
px(1 − p)m−x, x ∈ {0, 1, 2, . . . , m}

In our case, we know both the number of success-
ful trials, vk, (the current number of votes for the
candidate) and the total number of trials, vt, (the
current total number of votes). This means that, for
the candidate k, with number of votes vk, the un-
known left is the probability, here p, of receiving a
vote distributed from the unknown distribution Dk,
Dk being the distribution representing the probability
that the candidate will receive the next vote. We can
therefore rewrite the above equation by building a
binomial distribution Vk ∼ B(vt, p).

P (Vk = vk | Dk = p) =
(

vt

vk

)
pvk (1 − p)vt−vk

However, as the distribution Vk is not really important,
we could also represent the above as follows,

P (vk | Dk = p) =
(

vt

vk

)
pvk (1 − p)vt−vk

meaning: What is the probability of observing the
evidence vk given that Dk = p?

As what really interests us is the unknown dis-
tribution Dk, we can rewrite this as its likelihood
function [20], LDk

(p), which will answer the question:
Based solely on the evidence, how likely is it that a

5Here, m is used instead of the typical n in order to avoid
confusion with the number of candidates in the constituency.
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certain value of the probability p is the true probability
that lead to the observed events?

LDk
(p) = P (vk | Dk = p)

=
(

vt

vk

)
pvk (1 − p)vt−vk

Here is the plot of this function for the leading
candidate (k = 1) in our example, considering it
currently has vk = v1 = 60 and that the total number
of votes is vt = 200:

Figure 6: Plot of the likelihood function for the
leading candidate

Referring back to Section 4.1, this is an example of
a probability distribution representing an unknown
probability. We should however still expect the mode
of our distribution, its maximum, to be the simple
frequency calculation v1

vt
= 60

200 = 0.3, which we can
verify in Figure 6.

However, we are still missing a key element before
being able to say that this function represents the
probability distribution of the share of the votes a
given candidate has, as we still need to consider our
prior beliefs [20].

4.4. Building Prior Beliefs

Our prior beliefs, as the name implies, is what we
believe the probability distribution to be before see-
ing the evidence (the partial election results, in our
context). We express it in the form of a probability
distribution. In our context, there are two ways we
can approach this: prior ignorance and substantial
prior knowledge [7]. This process of quantifying our
prior beliefs is often referred to as prior elicitation [6].

Prior ignorance is really quite easy: we assume
we know nothing before the election. Therefore, we

need a distribution illustrating that we consider all
probabilities to be equally likely. This is the perfect
use for the uniform distribution, so we would say that
our prior beliefs about the probability distribution
of the share of the votes of a given candidate (Dk)
follows a Uniform(0, 1) distribution (also known as a
Be(1, 1) distribution).

Substantial prior knowledge is quite a bit less triv-
ial. First, let’s define exactly what it means. Com-
monly, we will say we have substantial prior knowledge
“[when] expert opinion, for example, gives us good rea-
son to believe that some values in a permissable range
for [p] are more likely to occur than others.” [6] In our
case, expert opinions could be the polls from firms
like Léger, who usually publish there results a few
weeks before any major election. An example of such a
report could be Léger’s Élections provinciales :
Montréal et Laval [9], which contains two key
pieces of information:

• The voting intentions (what percentage of people
plan to vote for each of the parties).

• The firmness of the intentions (for each party
what percentage of people don’t expect to change
their minds).

For example, suppose we knew from a report that
35% of the citizens intended to vote for a given party,
and that 45% of those people are quite firm about
their decision, how could we transform this into a
probability distribution? For the reasons outlined in
Section 4.2, it seems reasonable to try building a beta
distribution. Let’s therefore define our prior beliefs
distribution as U ∼ Be(α, β).

First, we know that our expected value (the mean
of the distribution) should be 35 % (0.35). Then we
could define “quite firm” as being at ±5% of the mean.
The probability of landing in that range must therefore
be equal to 45 % (0.45). This is equivalent to stating
that the area under the PDF of our distribution in
the range [0.30, 0.40] should be equal to 0.45. Let’s
write a system of equation using both of these facts:

0.35 = E(U)

= µU

7
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= α

α + β

And

0.45 =
∫ 0.40

0.30
P (U = x) dx

=
∫ 0.40

0.30

xα−1(1 − x)β−1

B(α, β) dx

We should also keep in mind that both α and β

need to be positive to satisfy the requirements of the
beta function. As there is no trivial analytical solution
to this system of equations, the most efficient solution
is to resort to numerical approximation to solve for α

and β. It is to be noted that this system of equations
may not always yield a solution when considering
extreme requirements, like having a exceedingly small
margin arround the mean for the definition of “quite
firm”. This, however, is not really an issue as these
cases would lead to such certain prior beliefs that any
evidence would hardly be relevant.

Using Wolfram Mathematica [30] or similar
software, we can find that this system is solved by
α ≈ 11.485 and β ≈ 21.330. This gives us the folowing
probability distribution as our prior beliefs:

Figure 7: Plot of the probability distribution built
from prior knowledge

It is important to keep in mind that this process
is quite subjective. In fact, we chose to define “quite
firm” as being ±5% of the mean, but we could have
chosen ±7%, ±3% or any other value. This is the
main weakness of this process: our biases can easily
sneak into our statistics if we are not careful.

As our prior beliefs can be represented as a beta
distribution no matter if we have prior ignorance or
prior substantial knowledge, it makes sense to define
our prior beliefs for the candidate k as Dk ∼ Be(ak, bk)

before seeing any of the evidence. For the rest of this
investigation, all of our prior knowledge about the
candidate k will be referred to with the variables ak

and bk shaping this distribution. We can now write
our prior beliefs as follows:

P (Dk = p) = pak−1(1 − p)bk−1

B(ak, bk)

4.5. Combining Prior Beliefs and
Likelihood

Now that we know how to form our prior beliefs and
our likelihood function, it is time to combine them
into the probability distribution for the share of votes
of a candidate.

This is where Bayes’ theorem comes in. In fact, this
theorem gives a systematic method to mix prior beliefs
and observed evidence (summarized into the likelihood
function) into posterior beliefs.6 As a reminder, here
is the formula for said theorem [19], where A and B

are independent random events:

P (A | B) = P (B | A)P (A)
P (B)

However, I dislike this depiction of Bayes’ theorem
as it abstracts and hides its true beauty. Exploring
each of the terms leads us to the following:
P (A | B) This represents our posterior beliefs about

A, considering that B happened.
P (B | A) This represents the likelihood that A hap-

pens given the observed evidence for B.
P (A) This represents our prior beliefs about A.
P (B) This represents the total probability of B. Es-

sentially, this has the effect of scaling the prob-
ability of A|B such that it lands between 0 and
1. In the case of probability distributions, this
ensures that the area under the distribution’s
curve equals 1 [5].

It is also interesting to note that P (B | A) and P (A)
can not only be probabilities, but also probability
distributions, making P (A | B) into one too.

As P (B) is simply a scaling constant, we can rewrite
6A justification for Bayes’ theorem has been deemed outside

of the scope of this investigation.
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this formula as

P (A | B) ∝ P (B | A)P (A)

However, I believe that the following is a much more
elegant way to describe Bayes’ theorem [5]:

posterior ∝ likelihood × prior

The beauty of this lies in how clearly it highlights
how evidence (likelihood) doesn’t replace our prior
beliefs, but rather updates them to form our posterior
beliefs [16].

But how could we apply this to our variables? Let’s
rewrite this in terms of our variables and explore each
of the terms, keeping in mind p ∈ [0, 1]:

P (Dk = p | vk) ∝ P (vk | Dk = p)P (Dk = p)

P (Dk = p | vk) This is the probability distribution
Dk (as a function of p) we are searching for.

P (vk | Dk = p) This is the likelihood function we
derived earlier, LDk

(p).
P (Dk = p) This is the prior beliefs distribution we

derived earlier.
As we can see, all of our work is really coming in

together. Let’s substitute the terms with our findings
from the previous subsections.

P (Dk = p | vk) ∝ P (vk | Dk = p)P (Dk = p)

∝
((

vt

vk

)
pvk (1 − p)vt−vk

)
(

pa−1(1 − p)b−1

B(a, b)

)
∝
(
pvk (1 − p)vt−vk

)(
pa−1(1 − p)b−1)

∝ pvk+a−1(1 − p)vt−vk+b−1

There are three things to notice and recall here:
(i) As this distribution represents possible values of
a probability p, it’s domain is [0, 1]. (ii) As with any
other continuous probability distribution, its area over
its range (here, [0, 1]) must be equal to 1. (iii) The
beta distribution matches both the form of the equa-
tion we obtained and the above two criterias.

Finding the beta distribution corresponding to our
above equation is simply a question of identifying

the values of the unknown parameters. In a beta
distribution Be(α, β) whose PDF is expressed as a
function of x, x is raised to the power of α − 1 and
1 − x is raised to the power of β − 1. Applying this
to our example, where the distribution is expressed
in function of p, we get the following coefficients and,
therefore, the following distribution:

α − 1 = vk + ak − 1

α = vk + ak

And

β − 1 = vt − vk + bk − 1

β = vt − vk + bk

Therefore

Dk | vk ∼ Be(vk + ak, vt − vk + bk)

Sadly, as detailed polls for elections dating back
multiple years are not trivial to find, we will have
to assume prior ignorance for the evaluation part of
this investigation. Remembering that prior ignorance
can be represented as a Be(1, 1) distribution, we know
that both ak and bk would be equal to 1 in this sce-
nario. The following expression therefore represents
our posterior beliefs when we lack substantial prior
knowledge.

Dk | vk ∼ Be(vk + 1, vt − vk + 1)

The process of deriving prior beliefs, observing ev-
idence to build a likelihood function and combining
those two elements together is commonly referred to as
bayesian analysis [20], hence the name of this paper.

As a reminder, Dk is the distribution representing
the probability that the candidate k will receive the
next vote, which is equivalent to the share of votes it
would get if the election was to run infinitely.

For the sake of visual understanding, let’s visualize
our findings for each of the candidates in our example.

It is interesting to note that both our prior and
posterior beliefs are beta distribution when the likeli-
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Figure 8: The set of distributions D

hood function comes from a binomial distribution. In
bayesian analysis terminology, we would describe this
by saying that the beta distribution is a conjugate
prior for the binomial distribution [10].

4.6. Comparing Probability Distributions

In Figure 8, we can see that, just as we would expect,
the more votes a candidate currently has, the more
likely it is to have a larger share of the votes. For
example, the candidate with the most votes, candidate
1, is associated with the rightmost distribution, while
the candidate with the least votes, candidate 5, is
associated with the leftmost distribution.

However, we still don’t have the concrete probability
that each candidate has to win. For now, let’s assume
that elections are infinite and that winning means
having the greatest share of votes in the long run.7

This would mean that a candidate’s probability to
win is the probability that its probability distribution
from the D is “bigger” than all the other candidates’
distributions. But what exactly does “bigger” mean
here? And how could we quantify it? For the following
steps, visual examples will be crucial. Let’s use the
leading candidate as our example.

First, let’s consider the probability that some can-
didate k will have less than a certain share r of the
votes, P (Dk ≤ r)8. Plotting this for all candidates
except the leading one gives us Figure 9.

As all of our distributions come from independent
events, we can find the probability that all these four
distributions will be smaller than r by simply multi-
plying them together. Plotting this leads to Figure 10.

7This assumption will be revisited in Section 4.7.
8As we are working with continuous distributions, P (Dk ≤ r)

is equivalent to P (Dk < r).

Figure 9: The CDFs of the distributions D for all
but the leading candidate

Figure 10: The product of the CDFs of the
distributions D for all but the leading candidate

From the distribution of the leading candidate, D1,
we know the probability that it will have some share
r of the votes. Therefore, keeping in mind we are
working with independent events, we can find the
probability that all other candidates will have a share
smaller than r (what we see in Figure 10) and that
the leading candidate will have that share of the votes
(D1’s PDF evaluated at r) by simply multiply them
together.

Figure 11: Probability that the leading candidate at
any given share of the votes

Finally, we can get the total probability that the
leading candidate will have a bigger share of votes
than all the other candidates by calculating the area
under the above curve over the course of its domain.

10
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This would yield that the leading candidate has a prob-
ability of approximately 0.86658 of winning. Doing
the calculations for all the candidates gives us approx-
imately the following results: (1) 0.86658 (2) 0.13183
(3) 0.00012 (4) 0.00004 (5) 0.00000.

A simple verification we can do to ensure our math-
ematical reasoning was not blatantly wrong is simply
to add the above numbers and verify they add up to
1, as we know that a candidate will be elected (the
probability of any candidate being elected is the sum
of the probability of each candidate to be elected),
which they do.9 In other words, the probability that
a candidate will win is mutually exclusive and com-
plementary to the probability that any of the other
candidates will.

An important question left unanswered is why was
the area under the curve not 1. Of course, we know
intuitively that this couldn’t be the case, but all other
continous probability distributions encountered in this
paper had an area of 1, leading to the question: What
is different here? What they all had in common is
that they considered how an even that we know will
happen would happen. However, here, the candidate
is not certain to win, which is why the total probability
of it winning, the area under the curve, is less than
one.

Let’s summarize the steps we did in a more general
form, assuming we are searching for the probability
that a candidate k will win. First, we multiplied the
probability that all other candidates would have a
share smaller than r of the votes.

n∏
i=1
i̸=k

P (Di ≤ r)

Then, we multiplied that expression by the probability
that the candidate k would have that share r of the
votes.

P (Dk = r)
n∏

i=1
i̸=k

P (Di ≤ r)

9Adding the numbers displayed here leads to finding 1.00001
as the sum instead. This deviation is simply due to the
fact that the numbers were calculated with more significant
figures than displayed here.

Finally, we took the area under the curve.∫ ∞

−∞
P (Dk = r)

n∏
i=1
i ̸=k

P (Di ≤ r) dr

However, since Dk is a beta distribution, P (Dk = r)
is 0 for all values outside of the interval [0, 1] and we
can therefore limit the bounds of the integral.∫ 1

0
P (Dk = r)

n∏
i=1
i ̸=k

P (Di ≤ r) dr

More generally, the following is the formula for
calculating the probability that a certain probability
distribution Xk will have a greater value than all
other distributions in the set X, containing n elements,
considering the PDF of the distribution Xk has non-
zero values only in the interval [a, b]. This expression
is largely inspired from What is P (X1 > X2, X1 >

X3, . . . , X1 > Xn)? [29]10.

P

(
n⋂

i=1
Xk ≥ Xi

)
=
∫ b

a

P (Xk = x)
n∏

j=1
j ̸=k

P (Xj ≤ x) dx

It is to be noted that there is no analytical solution
to the above equations for sets of distributions that
contain more than two elements [29]. Therefore, nu-
merical integration will be needed in order to find the
probability that a certain candidate will win.

4.7. Considering the Number of Votes
Left

Up to here, we assumed some sort of infinite election
where a candidate won if the distribution of his share
of the votes in the long run was bigger than the one
of all the other candidates. However, in a real world
election, there is a fix number of votes. But how could
we take this into account?

What we first need to know is the probability that
a certain candidate will gain a certain number of votes
over the number of votes left, vl. As we may notice,

10Although it originally came from a mathematics discussion
forum, I believe I have provided a sufficient justification for
this formula.
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this looks quite a bit like a binomial experiment: (i) we
have a fix number of trials (the number of votes left)
(ii) we have only two possible states for each trial
(success being the candidate gaining a vote and failure
being another candidate gaining it) (iii) each trial has
the same probability of having a specific outcome.

The only problem is that we do not have a prob-
ability of gaining a vote, but rather a probability
distribution, Dk | vk (for the candidate k). Although
this may seem like an issue, it actually isn’t. What
we need to do is to combine the binomial distribu-
tion described above to our probability distribution
Dk | vk into a combined predictive distribution. In
our case, because we have a beta distribution and
a binomial distribution, the distribution we will ob-
tain will be a beta-binomial distribution [17], notated
here BetaBin(α, β, m), where α and β are the param-
eters of the underlying beta distribution and m is the
number of trial11.

The following demonstration of the combination of
both distributions is a more detailed version of the
one included in Bayesian Statistics, Simulation and
Software — The Beta-Binomial Distribution [1]. The
first step is to find the simultaneous distribution of the
beta and binomial distributions. This means weighing
the binomial distribution, X ∼ B(m, p), as a function
of the probability p, by the probability that the beta
distribution, Y ∼ Be(α, β), will equal p. This process
is extremely similar to what we did when trying to
form our posterior beliefs from a binomial likelihood
and a beta prior.

P (X = x | Y = p) = P (X = x)P (Y = p)

=
((

n

x

)
px(1 − p)n−x

)
(

pα−1(1 − p)β−1

B(α, β)

)
=

(
n
x

)
B(α, β)px+α−1(1 − p)n−x+β−1

Then, we can find the predictive distribution, what
we are actually searching for, by integrating the above

11Here, m is used instead of the typical n in order to avoid
confusion with the number of candidates in the constituency.

over the range of p, [0, 1].

P (X = x) =
∫ 1

0

(
n
x

)
B(α, β)px+α−1(1 − p)n−x+β−1 dp

=
(

n
x

)
B(α, β)

∫ 1

0
px+α−1(1 − p)n−x+β−1 dp

We may recognize from Section 4.2 that the integral
we are left with is the denominator of the PDF of a
beta distribution Be(x + α, n − x + β), which can be
expressed in terms of the beta function, as follows:

P (X = x) =
(

n
x

)
B(α, β)

∫ 1

0
px+α−1(1 − p)n−x+β−1 dp

=
(

n
x

)
B(α, β)B(x + α, n − x + β)

=
(

n

x

)
B(x + α, n − x + β)

B(α, β)

Considering this, we can now find an expression
for the probability that the candidate k will receive a
certain number of votes over the rest of the counting
process, using vl as the number of trials and the
parameters from Dk | vk, the probability for the kth-
candidate to receive the next vote, for the underlying
beta distribution.

Ek | vk ∼ BetaBin(vk + ak, vt − vk + bk, vl)

Plotting this distribution for each of the candidates
gives us Figure 12.

Figure 12: The set of distributions E

Carrying forward, I will notate the PDF of the
distribution Ek | vk using functional notation to facil-
itate the representation of the operations we need to
do on it. Therefore, we currently have the following:

Ek(x) =
(

vl

x

)
B(x + vk + ak, vl − x + vt − vk + bk)

B(vk + ak, vt − vk + bk)

=
(

vl

x

)
B(x + vk + ak, ve − x − vk + bk)

B(vk + ak, vt − vk + bk)
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Comparing these probability distributions, however,

would not be the full story. In fact, we not only
want to take into account the number of votes each
candidate is expected to get, but also the current
number of votes of each candidate. This can be done
by translating the above function to the right by the
candidate’s current number of votes, vk. The set of
the translated distributions will be referred to as Et

and the distribution of the candidate k as Etk.

Etk(x) = Ek(x − vk)

=
(

vl

(x − vk)

)(B((x − vk) + vk + ak,
ve − (x − vk) − vk + bk)

)
B(vk + ak, vt − vk + bk)

=
(

vl

x − vk

)
B(x + ak, ve − x + bk)

B(vk + ak, vt − vk + bk)

An important fact to keep in mind is that Ek, and
therefore Etk, are discrete probability distributions.
The problem with this is that discrete probability dis-
tribution are much harder to compute than continous
ones. This is because modern computational math-
ematics engine, like Wolfram Mathematica [30]
have many more tricks to optimize integrals (used in
continuous distributions) than sums (used in discrete
distributions). Furthermore, the formula derived in
Section 4.6 to compare probability distributions is
only built for continous distributions, which would
mean we couldn’t use it to compare our distributions
for the expected final number of votes.

The good news is that the beta-binomial distri-
bution, BetaBin(α, β, n), can be computed for non-
integer values, as all the functions and operations it
depends on also are.

First, the choose function has a continuous expan-
sion, which can be expressed as follows [23].

(
x

y

)
=


0 y < 0

Γ(x + 1)
Γ(y + 1)Γ(x − y + 1) 0 ≤ y ≤ x

0 x < y

Although it is common not to set restrictions on this
expression, I believe they keep the function closer to
its original meaning, which is useful in our context, as
we still want the idea that it is impossible (value of 0)

to have less than 0 votes or more than the maximum.
Second, the beta function is perfectly well defined

for both integer and non-integer values, except for
nonpositive integers. However, when examining each
of the parameters of the beta functions in our expres-
sion, we can realize that they will never be nonpositive
as long as the number of votes we are considering is
between the current number of votes, vk, and the
maximum number of votes the candidate could get,
vk + vl, keeping in mind that ak and bk will always be
greater than 0, due to restrictions on the parameters
of the beta function.
x + ak ≤ 0 This implies that x ≤ −ak, but it makes

no sense to consider the probability that a certain
candidate will lose votes.

ve − x + bk ≤ 0 This implies that x ≥ ve +bk. How-
ever, it doesn’t make sense to consider the proba-
bility that a candidate will have more votes than
are expected in the end for all canidates.

vk + ak ≤ 0 This implies that vk ≤ −ak, but a can-
didate will always have a non-negative vote count.

vt − vk + bk ≤ 0 This implies that vk ≥ vt + bk, but
it is not possible for a candidate to have more
votes than the total amount.

For impossible number of votes, the most logical
thing is to define our function as having a value of 0, to
indicate the impossibility of such an event happening.

The continous version of Etk and the continous
version of the set Et will be respectively denoted Etck

and Etc. Using this, we currently have the following
expression.

Etck(x) =


0 x < vk(

vl

x−vk

) B(x+ak,ve−x+bk)
B(vk+ak,vt−vk+bk) vk ≤ x ≤ vk + vl

0 vk + vl < x

All of this, however, introduces the strange idea of
our candidates having non-integer vote counts. The
important thing to realize is that this doesn’t affect
the shape of the distribution, as we are not changing
the underlying function12, which means that we will

12Although there are functions that behave oddly at non-integer
values, the above expression works as we would expect
a continuous interpolation to do. This is shown later in
Figure 13.
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still be able to meaningfully compare them.

If we are to consider Etk(x) for non-integer val-
ues of x, there is one last problem we need to fix.
Whereas continous probability distributions use area
to determine probability, discrete ones use sums. This
means that we need to rescale Etck(x) to ensure the
area under its PDF in the interval [vk, vk + vl] (the
interval on which it is non-zero) is equal to 1, instead
of its sum at integer values. This can be achevied by
dividing the function by its integral on that interval.
For the sake of clarity, the following demonstration
will assume x ∈ [vk, vk +vl] because it is the only part
of the function which will be affected by the rescaling.

Etck(x) = Etk(x)∫ vk+vl

vk
Etk(t) dt

=
(

vl

x−vk

) B(x+ak,ve−x+bk)
B(vk+ak,vt−vk+bk)∫ vk+vl

vk

(
vl

t−vk

) B(t+ak,ve−t+bk)
B(vk+ak,vt−vk+bk) dt

=
(

vl

x−vk

)
B(x + ak, ve − x + bk)∫ vk+vl

vk

(
vl

t−vk

)
B(t + ak, ve − t + bk) dt

·

(
1

B(vk+ak,vt−vk+bk)

)
(

1
B(vk+ak,vt−vk+bk)

)
=

(
vl

x−vk

)
B(x + ak, ve − x + bk)∫ vk+vl

vk

(
vl

t−vk

)
B(t + ak, ve − t + bk) dt

=
(

vl

x−vk

) Γ(x+ak)Γ(ve−x+bk)
Γ((x+ak)+(ve−x+bk))∫ vk+vl

vk

(
vl

t−vk

) Γ(t+ak)Γ(ve−t+bk)
Γ((t+ak)+(ve−t+bk)) dt

=
(

vl

x−vk

)
Γ(x + ak)Γ(ve − x + bk)∫ vk+vl

vk

(
vl

t−vk

)
Γ(t + ak)Γ(ve − t + bk) dt

·

(
1

Γ(ve+ak+bk)

)
(

1
Γ(ve+ak+bk)

)
=

(
vl

x−vk

)
Γ(x + ak)Γ(ve − x + bk)∫ vk+vl

vk

(
vl

t−vk

)
Γ(t + ak)Γ(ve − t + bk) dt

As a reminder, vk is the number of votes of the
candidate k, with ak and bk being the parameters of
the beta distribution representing our prior beliefs
about its share of the votes.

Keeping in mind the domain restrictions on the
above expression, the following is the actual function:

Etck(x) =


0 x < vk

( vl
x−vk

)Γ(x+ak)Γ(ve−x+bk)∫ vk+vl

vk
( vl

t−vk
)Γ(t+ak)Γ(ve−t+bk)dt

vk ≤ x ≤ vk + vl

0 vk + vl < x

In the above, the goal was to simplify the expression
not visually, but computationnaly. Later, to verify
the accuracy of our model, we will need to run it
somewhere between a few thousand and arround a
million times. Why this is needed will be detailed
then. This means that the computations we are doing
need to be as quick as possible. To do so, I have
taken out as many constants as possible from inside
the integrals and simplified terms that cancelled out
in the beta function, even though this arguably lead
to a quite verbose expression.

Plotting this continuous and translated set of dis-
tributions gives us Figure 13.

Figure 13: The set of distributions Etc

As we can see, the distributions have now been
translated by the candidates’ current vote counts.
Furthethermore, just as we would expect, there is
verry little difference in the shape of each distribution,
because our discrete plots already had so many points
that they looked continuous. The only noticeable
change is the scale, due to the rescaling we did above.

We now finally have a set of continous probabil-
ity distributions taking into account the current vote
counts and the number of votes left to be counted.
However, before using the formula derived in Sec-
tion 4.6, we also need to find the CDF of Etck

Once again, the only relevant interval is [vk, vk +
vl], as the cumulative probability of having less than
the current amount of votes is 0 and the cumulative
probability of having more than the possible amount
of votes is 1. Therefore, let’s assume this range for
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the following demonstration.

P (Ectk ≤ x) =
∫ x

vk

Etck(r) dr

=
∫ x

vk

(
vl

r−vk

)
Γ(r + ak)Γ(ve − r + bk)(∫ vk+vl

vk

(
vl

t−vk

)
Γ(t + ak)

Γ(ve − t + bk) dt

) dr

=
∫ x

vk

(
vl

r−vk

)
Γ(r + ak)Γ(ve − r + bk) dr∫ vk+vl

vk

(
vl

t−vk

)
Γ(t + ak)Γ(ve − t + bk) dt

Including the restrictions, the full definition of the
CDF of Ectk would therefore be the following:

P (Ectk ≤ x) =
0 x < vk∫ x

vk
( vl

r−vk
)Γ(r+ak)Γ(ve−r+bk)dr∫ vk+vl

vk
( vl

t−vk
)Γ(t+ak)Γ(ve−t+bk)dt

vk ≤ x ≤ vk + vl

1 vk + vl < x

Remembering the equation from Section 4.6, we
can now replace the terms with the expressions we
found in this section.

P

(
n⋂

i=1
Xk ≥ Xi

)
=
∫ b

a

P (Xk = x)
n∏

j=1
j ̸=k

P (Xj ≤ x) dx

P

(
n⋂

i=1
Etck ≥ Etci

)
=
∫ vk+vl

vk

P (Etck = x)
n∏

j=1
j ̸=k

P (Etcj ≤ x) dx

So, here it is. After all this work, we finally have a
computable expression for the probability a candidate
has of winning. As we can see, it uses the PDF of
the candidate whose probability of winning we are
searching for and the CDFs of the other candidates.

Using this formula with our example would give us
the following predictions.

Table 1: Predictions from first and second model
Candidate # Section 4.6 Section 4.7

1 0.86658 0.96604
2 0.13183 0.03395
3 0.00012 0.00000
4 0.00004 0.00000
5 0.00000 0.00000

As we can see, the predictions change quite a bit
once we account for the number of votes left. The
probability of the first candidate winning has increased
by arround 10 percentage points, decreasing the prob-
ability of other candidates winning. This makes sense,
because the leading candidate not only has a higher
probability of gaining a vote than his opponents, but
also because it doesn’t need to catch up to anyone.

It is to be noted that this expression is exceedingly

expansive to compute, as it necessitates the integral
of the product of (n − 1) integrals for an n-party
election, sometimes taking upwards of 1 min, even on
a modern computer, for a single candidate. A quicker
way to approximate it would therefore be an highly
interesting extension to this paper.

5. Analyzing the Model

Now that we have a model, it would be most useful
to be able to generate a plot in the same style and
configuration as the one we used to visualize our
collected data, seen in Figure 4.

As a reminder, what we have is a two-dimensional
histogram showing the probability of the leading can-
didate winning if it lands in a given bin of percentage
of votes counted and percentage lead. Also, it is im-
portant to remember that our data actually has 6
axes (the percentage of votes counted and the number
of votes for each of the five candidates), which are
indirectly reflected in the two we have chosen here.
However, when looking at this figure, we assume that
all the other factors average out.

Due to the time-cost of the expression we found, it
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is not really feasible to try and draw it continuously,
especially when taking into account that we need to
average it over all other factors, which would most
likely involve even more integrals.

Therefore, we need to resort to an other method for
visualizing it. The solution I found was to generate
random points in the 6-dimensional space, feeding
them through the function we built and finally graph-
ing in them in the same way that we did for the
real-world data in Figure 4. The only difference in the
graph is that the bins would now be coloured based
on the average of the points they were containing, as
each point already represents the probability for a
lead candidate to be elected.

However, we need to keep in mind that all the other
factors should not necesseraly be uniformly random,
but distributed in some way in order to make our
random data set more similar to the real-world.

This is why the total number of votes was generated
using the normal distribution found in Section 3 (mean
of 43 476 and standard deviation of 13 106), truncated
to a reasonnable range, 8000 to 80 000, in order to
prevent ridiculously small or large values to come in
and skew our graph. These bounds were chosen based
on the constituencies with the most / the least votes.

The principal downside to using random points is
that it allows for some random variation in the graphs,
which is why the graphs below were made with as
many points as possible.

Plotting the graph described above yields Figure 14.

Figure 14: Plot of the model from Section 4.7

As we may notice, there is something horribly wrong
here: the plot is completely yellow! If our model pre-
dicts a 0.95 probability of winning even when only 0 %
to 16.67 % of votes were counted and the leading can-
didate only had 0 % to 16.67 % of lead, it means that
it gets really quite convinced about future outcomes
even after seeing only very little, very unconvincing,
data. This means that each vote we feed the model
carries too much certainty.

The simplest fix for this would therefore be to scale
down the number of votes we give the model by a
certain scaling constant, let’s call it S, in order to
diminish their importance. The rationale for this
probably lies in the fact that we assumed each vote
to be completely independent, even though this is
probably not the case in real-life, where many factors
influence the relation between different votes.

Examples of this may include: (i) opinions varying
between different geographic parts of the constituency
(ii) herd mentality taking place (iii) individuals trying
to account for the failures of the first-past-the-post
voting system (not voting for their favorite candidate
in order to prevent a candidate they dislike getting into
office), although this is probably more a humanities
question than a mathematical one.

Applying this fix to our model is fortunately really
quite trivial. In fact, we only need to divide each
value of the set of votes per candidate v by the scaling
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constant S before calculating the total number of
votes vt, the number of expected votes ve and the
expected number of votes left to be counted vl. After
this is done, we can simply use the formula found in
Section 4.7.

For example, using the example data from Section 4
and a scaling constant S = 10, we would get the
following values.

n = 5

v =
{

60
10 ,

50
10 ,

36
10 ,

34
10 ,

20
10

}
= {6, 5, 3.6, 3.4, 2, 1}

vt = 6 + 5 + 3.6 + 3.4 + 2 = 20

bc = 10

bt = 16

ve = 16
10(200) = 32

vl = 32 − 20 = 12

This simply has the effect of scaling everyone of
those calculated values by a factor of S, in this case
10. This means that we now consider the first candi-
date to have 6 votes, the second 5, the third 3.6, etc.
Furthermore, the total number of votes vt is now 20
instead of 200, the expected number of votes ve is is
32 instead of 320 and the expected number of votes
left vl is 12 instead of 120.

As justified earlier in Section 4.7, it is perfectly valid
to use non-integer values in our function, as it doesn’t
rely on any integer-only functions or operations.

With this scaling back of S = 10, we now would
get the following probabilities as our predictions.

Table 2: Predictions from first, second and third
model

Candidate # Section 4.6 Section 4.7 Section 5
1 0.86658 0.96604 0.66200
2 0.13183 0.03395 0.25740
3 0.00012 0.00000 0.04492
4 0.00004 0.00000 0.03321
5 0.00000 0.00000 0.00246

As we can see, the model with the scaling down
produces values that are much much closer to each

other. The model got a lot calculated a much smaller
probability for the first candidate to win and a much
bigger one for all the others, just as we wanted.

An other nice benefit of scaling back the number
of votes by a scaling factor is that this greatly de-
creases the time required to compute values with the
model. It is hard to definitively conclude why this
is the case without a depper look into the way the
mathematics engine used (in my case, Wolfram
Mathematica [30]) approximates integrals, but one
could suppose that this is due to the values we are
working with being much smaller as a result of the
scaling down.

However, we now need to find an optimal value for
S that maximizes the accuracy of our model13. First,
we need to define a metric for how good a certain
value of S is. I believe a sufficient way to evaluate
this would be to generate a plot of the model for a
certain value of S and look at the difference, for each
bin, between the calculated probability of the leading
candidate winning and the real-world probability from
the equivalent bin. Then, we could take the average
of these differences and use that as our metric for the
value of S. Our goal would then be to find the value
of S that minimizes this average error. This can be
visualized in Figure 15.

Figure 15: Plot of the error in the model for
S = 100

13For the sake of brevity, the following steps will be a simple
attempt at optimizing this parameter. However, a more
rigorous and complete working of the optimal value would
make a most interesting extension to this paper.
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In Figure 15, we can see how the error varies bin

per bin, from approximately 0 at 33.33 % to 50 % of
lead and 83.33 % to 100 % of votes counted up to
approximately 0.25 at 0 % to 16.67 % of lead and 50 %
to 66.67 % of votes counted. Calculating the average
of the different bins in this plot would yield an average
error of approximately 0.0596.

However, it is important to realize that this graph
is susceptible to quite a few sources of error14:

1. The real-world data does probably contain quite a
few anomalies due to the relatively small dataset
gathered (approximately 600 points divided in
36 bins only leaves about 16 points per bin, with
some having much less).

2. This also means that changing the number of bins
would probably change the average error in the
plot due to point boundaries moving.

3. The model plot being generated from random
points, it is also somewhat susceptible to random
error.

For example, the bin at 0 % to 16.67 % of lead and
50 % to 66.67 % in the real world data-plot does seem
to have an abnormally low probability of the leading
candidate being elected compared to its neighbours,
as can be seen in Figure 4.

Furthermore, many different error calculations
could have been used. For example, as we only look at
the average, we do not take into account the variation
of the error. The one selected here gives an idea of
when looking at a value from the model, what should
we expect the error on the probability to be.

Calculating the average error for some values of S

gives the following results15:
Those points where selected almost randomly within

a reasonable range of values for S (1 to 1000), while
approximately using an approximate binary-search
inspired algorithm (starting at the extremes of the
reasonable range values and recursively testing values
in their middle). The point S = 251 was also selected,
as it is approximately the average number of votes
14Although a quantitative way to handle these error sources

would be most helpful, such a thing has been deemed outside
of the scope of the investigation.

15Smaller values of S have less random points, as they are
much more expansive to calculate.

Table 3: Values of S tested with the number of
random points used and the average error

Value of S
Number of

random points
Average

error
1 835 0.0999
3 2865 0.0972

100 5000 0.0596
251 5000 0.0449
376 5000 0.0498
500 5000 0.0495
544 5000 0.0542
587 5000 0.0550
1000 5000 0.0818

per ballot box in the collected dataset.
Out of these points, S = 251 seems to be the op-

timal value, having the smallest average error. This
seems to indicate that even though individual votes
are not truly independent, individual ballot boxes
seem to be, as they give an outcome really quite close
to the real-world data, with an average error of only
approximately 0.0449. This version of the model and
its error can be visualized in Figures 16 and 17.

Figure 16: Plot of the model for S = 251

As we can see, the mathematical model with S =
251 produces an output (Figure 16) really quite similar
to the real-world data (Figure 4), to the exceptions
of some anomalies.

This is in terms shown in Figure 17 by a mostly
blue graph, indicating a very small ber bin difference
and, therefore, a very small average difference.

Figure 16 also shows the general trend we were
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Figure 17: Plot of the error in the model for
S = 251

expecting: the more votes are counted and the more
lead the leading candidate has, the higher are his
changes of winning. We can also observe other, more
specific, trends, such as the fact that the probability
of being elected gets really quite close to 1 as soon as
more than approximately 16.67 % of votes are counted
and that there is more than 16.67 % lead.

6. Conclusion

In conclusion, thanks to the tools of conditional prob-
ability, we were able to build a mathematical model
to calculate the probability that a certain candidate
in a constituency has to win. To do so, we first built
a likelihood function to summarize the probability to

observe the current evidence (the number of votes for
each candidate) and then constructed our prior beliefs
using prior elicitation to summarize what we thought
about each candidate before watching the election,
based on, for example, survey data. We were then
able to combine those two pieces of information using
Bayes’ theorem to obtain a probability distribution
representing the probability that a certain candidate
had a certain probability to win the next vote. Us-
ing a translated beta-binomial distribution, we were
then able to find the final expected number of votes
per candidate, which we could then compare to find
the probability that a certain candidate would win.
Finally, we realized that we needed to scale back the
number of votes we were feeding into the model in
order to make its output be much closer to the real-
world data we gathered in the beginning. The optimal
value we found for the scaling factor 251, although
the optimization techniques used here where less than
optimal.
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Appendices

A. Collected Data

Constituency Boxes Counted Total Boxes RDI Elected First First Count Second Second Count Third Third Count Fourth Fourth Count Fifth Fifth Count Total Votes End Winner End Total Votes

ABITIBI BAIE JAMES
NUNAVIK EEYOU 1 210 No NDP 17 PPC 12 LPC 8 CPC 4 Other 0 41 BQ 28436

ABITIBI TEMISCAMINGUE 1 263 No BQ 130 LPC 75 CPC 46 PPC 13 Other 0 264 BQ 45685
ACADIE BATHURST 1 218 No LPC 34 NDP 10 PPC 6 CPC 3 Other 0 53 LPC 42922
ACADIE BATHURST 25 218 No LPC 1429 CPC 429 NDP 290 PPC 208 Other 0 2356 LPC 42922

AHUNTSIC CARTIERVILLE 1 234 No LPC 61 BQ 39 CPC 7 PPC 2 Other 0 109 LPC 50409
AHUNTSIC CARTIERVILLE 60 234 No LPC 5357 BQ 2147 NDP 1384 CPC 861 Other 0 9749 LPC 50409

ALGOMA MANITOULIN
KAPUSKASING 216 220 No NDP 14216 CPC 10349 LPC 7901 PPC 2772 Other 0 35238 NDP 39523

ARGENTEUIL LA PETITE
NATION 1 253 No LPC 16 BQ 4 CPC 3 Other 2 Other 0 25 LPC 50613

ARGENTEUIL LA PETITE
NATION 80 253 No BQ 4514 LPC 4506 CPC 1585 NDP 843 Other 0 11448 LPC 50613

ARGENTEUIL LA PETITE
NATION 250 253 No LPC 18064 BQ 16975 CPC 6213 NDP 3253 Other 0 44505 LPC 50613

AVALON 1 233 No LPC 20 CPC 15 NDP 2 PPC 1 Other 0 38 LPC 37144
AVALON 32 233 No LPC 1714 CPC 1280 NDP 388 PPC 66 Other 0 3448 LPC 37144
AVALON 61 233 No LPC 3507 CPC 2670 NDP 793 PPC 156 Other 0 7126 LPC 37144

AVIGNON LA MITIS MATANE
MATAPEDIA 1 206 No BQ 177 LPC 55 CPC 32 NDP 11 Other 0 275 BQ 33075

AVIGNON LA MITIS MATANE
MATAPEDIA 193 206 No BQ 18202 LPC 6361 CPC 2681 NDP 1428 Other 0 28672 BQ 33075

BEAUCE 1 272 No LPC 3 CPC 1 BQ 1 PPC 1 Other 0 6 CPC 56980
BEAUCE 11 272 No CPC 368 BQ 111 LPC 96 PPC 91 Other 0 666 CPC 56980
BEAUCE 35 272 No CPC 2545 PPC 977 BQ 738 LPC 715 Other 0 4975 CPC 56980

BEAUPORT COTE DE
BEAUPRE ILE D’ORLEANS

CHARLEVOIX
139 221 No BQ 10946 CPC 7637 LPC 5387 NDP 1043 Other 0 25013 BQ 50136

BEAUPORT LIMOILOU 5 208 No LPC 238 CPC 152 BQ 145 NDP 18 Other 0 553 BQ 48644
BEAUPORT LIMOILOU 10 208 No LPC 438 CPC 400 BQ 355 NDP 86 Other 0 1279 BQ 48644
BEAUPORT LIMOILOU 62 208 No CPC 2625 BQ 2616 LPC 2553 NDP 1055 Other 0 8849 BQ 48644
BEAUPORT LIMOILOU 70 208 No CPC 3103 BQ 3070 LPC 2873 NDP 1210 Other 0 10256 BQ 48644
BEAUPORT LIMOILOU 73 208 No CPC 3283 BQ 3214 LPC 2968 NDP 1239 Other 0 10704 BQ 48644
BEAUPORT LIMOILOU 85 208 No CPC 3866 BQ 3841 LPC 3420 NDP 1455 Other 0 12582 BQ 48644
BEAUPORT LIMOILOU 107 208 No CPC 4648 BQ 4609 LPC 4187 NDP 1702 Other 0 15146 BQ 48644

BEAUSEJOUR 1 202 No LPC 64 CPC 25 PPC 20 NDP 14 Other 0 123 LPC 49145
BEAUSEJOUR 25 202 No LPC 2036 CPC 620 NDP 385 PPC 316 Other 0 3357 LPC 49145

BECANCOUR NICOLET
SAUREL 3 243 No BQ 87 LPC 71 Other 10 CPC 7 Other 0 175 BQ 50007

BECANCOUR NICOLET
SAUREL 25 243 No BQ 1676 LPC 524 CPC 342 NDP 133 Other 0 2675 BQ 50007

BECANCOUR NICOLET
SAUREL 100 243 No BQ 7727 LPC 2471 CPC 2361 NDP 827 Other 0 13386 BQ 50007

BELLECHASSE LES
ETCHEMINS LEVIS 160 326 No CPC 11276 BQ 4627 LPC 3500 NDP 1171 Other 0 20574 CPC 63182

BELOEIL CHAMBLY 1 292 No BQ 383 LPC 144 CPC 49 NDP 44 Other 0 620 BQ 65324
BELOEIL CHAMBLY 5 292 No BQ 1536 LPC 577 CPC 227 NDP 206 Other 0 2546 BQ 65324
BELOEIL CHAMBLY 36 292 No BQ 5131 LPC 2166 CPC 826 NDP 703 Other 0 8826 BQ 65324

BERTHIER MASKINONGE 1 274 No NDP 6 BQ 4 LPC 3 CPC 1 Other 0 14 BQ 54945
BERTHIER MASKINONGE 67 274 No NDP 3120 BQ 2537 LPC 1186 CPC 1086 Other 0 7929 BQ 54945
BERTHIER MASKINONGE 130 274 No NDP 6297 BQ 5344 LPC 2457 CPC 2037 Other 0 16135 BQ 54945
BERTHIER MASKINONGE 160 274 No NDP 7733 BQ 6886 LPC 3055 CPC 2504 Other 0 20178 BQ 54945
BERTHIER MASKINONGE 215 274 No NDP 10517 BQ 9936 LPC 4373 CPC 3383 Other 0 28209 BQ 54945
BERTHIER MASKINONGE 265 274 No BQ 16736 NDP 16131 LPC 7778 CPC 5167 Other 0 45812 BQ 54945
BERTHIER MASKINONGE 266 274 No BQ 17275 NDP 16349 LPC 7934 CPC 5264 Other 0 46822 BQ 54945

BONAVISTA BURIN TRINITY 1 275 No LPC 8 CPC 3 NDP 0 PPC 0 Other 0 11 LPC 29991
BONAVISTA BURIN TRINITY 2 275 No CPC 50 LPC 39 NDP 5 PPC 1 Other 0 95 LPC 29991
BONAVISTA BURIN TRINITY 15 275 No CPC 467 LPC 437 NDP 51 PPC 51 Other 0 1006 LPC 29991
BONAVISTA BURIN TRINITY 35 275 No LPC 1219 CPC 1135 NDP 173 PPC 117 Other 0 2644 LPC 29991
BONAVISTA BURIN TRINITY 55 275 No CPC 2166 LPC 2139 NDP 314 PPC 198 Other 0 4817 LPC 29991
BONAVISTA BURIN TRINITY 200 275 No LPC 9467 CPC 8189 NDP 1591 PPC 845 Other 0 20092 LPC 29991

BOURASSA 36 198 No LPC 2376 BQ 619 NDP 304 CPC 255 Other 0 3554 LPC 36932
BROME MISSISQUOI 195 279 No BQ 9655 LPC 9449 CPC 4708 NDP 2170 Other 0 25982 LPC 61471
BROME MISSISQUOI 230 279 No BQ 11797 LPC 11608 CPC 5622 NDP 2648 Other 0 31675 LPC 61471

BROSSARD SAINT LAMBERT 53 234 No LPC 4001 BQ 1318 CPC 748 NDP 739 Other 0 6806 LPC 52356
BURNABY SOUTH 27 191 No NDP 1056 LPC 921 CPC 739 PPC 101 Other 0 2817 NDP 40608
BURNABY SOUTH 35 191 No NDP 1420 LPC 1228 CPC 1002 PPC 129 Other 0 3779 NDP 40608
BURNABY SOUTH 147 191 No NDP 10276 LPC 8083 CPC 5926 PPC 902 Other 0 25187 NDP 40608

CAPE BRETON CANSO 1 214 No LPC 34 CPC 34 NDP 26 PPC 1 Other 0 95 LPC 39360
CAPE BRETON CANSO 95 214 No LPC 6331 CPC 4527 NDP 2294 PPC 611 Other 0 13763 LPC 39360

CARDIGAN 18 95 No LPC 2069 CPC 1238 NDP 362 GPC 184 Other 0 3853 LPC 22094
CENTRAL NOVA 70 232 No LPC 3312 CPC 2441 NDP 1205 PPC 295 Other 0 7253 LPC 40474

CHARLESBOURG HAUTE
SAINT CHARLES 145 242 No CPC 8830 BQ 5382 LPC 4577 NDP 1684 Other 0 20473 CPC 57349

CHATEAUGUAY LACOLLE 2 222 No BQ 164 LPC 159 CPC 81 PPC 23 Other 0 427 LPC 48683
CHATEAUGUAY LACOLLE 18 222 No BQ 1624 LPC 1145 CPC 558 NDP 190 Other 0 3517 LPC 48683
CHATEAUGUAY LACOLLE 29 222 No BQ 3246 LPC 2048 CPC 1053 NDP 378 Other 0 6725 LPC 48683
CHATEAUGUAY LACOLLE 155 222 No BQ 12852 LPC 11926 CPC 4043 NDP 2510 Other 0 31331 LPC 48683

CHICOUTIMI LE FJORD 4 161 No BQ 95 LPC 77 CPC 63 NDP 15 Other 0 250 CPC 42006
CHICOUTIMI LE FJORD 100 161 No CPC 7139 BQ 6151 LPC 3371 NDP 1030 Other 0 17691 CPC 42006
CHICOUTIMI LE FJORD 120 161 No CPC 9586 BQ 7966 LPC 4324 NDP 1327 Other 0 23203 CPC 42006

CHURCHILL KEEWATINOOK
ASKI 115 157 No NDP 5025 LPC 3021 CPC 3014 PPC 631 Other 0 11691 NDP 17927

COAST OF BAYS CENTRAL
NOTRE DAME 1 246 No LPC 23 CPC 4 NDP 0 Other 0 Other 0 27 CPC 31834

COAST OF BAYS CENTRAL
NOTRE DAME 45 246 No LPC 1397 CPC 1331 NDP 192 Other 0 Other 0 2920 CPC 31834

COAST OF BAYS CENTRAL
NOTRE DAME 80 246 No LPC 3050 CPC 2961 NDP 482 Other 0 Other 0 6493 CPC 31834

COAST OF BAYS CENTRAL
NOTRE DAME 120 246 No CPC 5161 LPC 4915 NDP 788 Other 0 Other 0 10864 CPC 31834

COAST OF BAYS CENTRAL
NOTRE DAME 159 246 No CPC 7260 LPC 6849 NDP 1120 Other 0 Other 0 15229 CPC 31834
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COAST OF BAYS CENTRAL
NOTRE DAME 243 246 No CPC 13874 LPC 13125 NDP 2140 Other 0 Other 0 29139 CPC 31834

COMPTON STANSTEAD 220 275 No LPC 13308 BQ 11229 CPC 6511 NDP 2848 Other 0 33896 LPC 57796
CUMBERLAND COLCHESTER 15 218 No CPC 742 LPC 618 NDP 200 PPC 89 Other 0 1649 CPC 40417
CUMBERLAND COLCHESTER 34 218 No CPC 1578 LPC 1188 NDP 447 PPC 164 Other 0 3377 CPC 40417
CUMBERLAND COLCHESTER 108 218 No CPC 6310 LPC 4637 NDP 1771 PPC 631 Other 0 13349 CPC 40417

DARTMOUTH COLE
HARBOUR 1 209 No NDP 232 LPC 223 PPC 65 GPC 26 Other 0 546 LPC 45628

DARTMOUTH COLE
HARBOUR 15 209 No LPC 1229 NDP 1002 PPC 308 GPC 77 Other 0 2616 LPC 45628

DORVAL LACHINE LASALLE 69 233 No LPC 5727 BQ 1745 NDP 1633 CPC 1352 Other 0 10457 LPC 48141
DURHAM 1 217 No CPC 29 LPC 15 NDP 4 PPC 0 Other 0 48 CPC 67730
DURHAM 34 217 No CPC 2874 LPC 1485 NDP 1010 PPC 313 Other 0 5682 CPC 67730

EDMONTON CENTRE 3 209 No LPC 75 CPC 71 NDP 37 PPC 4 Other 0 187 LPC 49148
EDMONTON STRATHCONA 150 216 No NDP 17570 CPC 7847 LPC 2304 PPC 1558 Other 0 29279 NDP 52223

EGMONT 51 100 No LPC 3010 CPC 2074 GPC 699 NDP 620 Other 0 6403 LPC 19561
ELMWOOD TRANSCONA 175 188 No NDP 15839 CPC 8856 LPC 4795 PPC 1881 Other 0 31371 NDP 41839

FREDERICTON 1 154 No LPC 3 CPC 2 GPC 2 NDP 0 Other 0 7 LPC 44062
FREDERICTON 6 154 No CPC 784 LPC 466 GPC 205 NDP 182 Other 0 1637 LPC 44062
FREDERICTON 29 154 No CPC 2007 LPC 1971 GPC 847 NDP 779 Other 0 5604 LPC 44062
FREDERICTON 63 154 No CPC 4235 LPC 4101 NDP 1750 GPC 1699 Other 0 11785 LPC 44062
FREDERICTON 80 154 No LPC 6272 CPC 6109 NDP 2395 GPC 2354 Other 0 17130 LPC 44062
FREDERICTON 85 154 No CPC 6590 LPC 6575 NDP 2599 GPC 2455 Other 0 18219 LPC 44062
FREDERICTON 104 154 No CPC 8484 LPC 8357 NDP 3330 GPC 3116 Other 0 23287 LPC 44062
FREDERICTON 148 154 No LPC 14834 CPC 14524 NDP 5207 GPC 5167 Other 0 39732 LPC 44062
FUNDY ROYAL 1 200 No LPC 3 NDP 3 CPC 1 PPC 1 Other 0 8 CPC 44382
FUNDY ROYAL 30 200 No CPC 1950 LPC 948 NDP 601 PPC 490 Other 0 3989 CPC 44382

GASPESIE LES ILES DE LA
MADELEINE 1 223 No BQ 115 LPC 84 CPC 43 NDP 5 Other 0 247 LPC 36858

GASPESIE LES ILES DE LA
MADELEINE 4 223 No BQ 212 LPC 208 CPC 70 NDP 40 Other 0 530 LPC 36858

GASPESIE LES ILES DE LA
MADELEINE 8 223 No LPC 340 BQ 326 CPC 106 NDP 53 Other 0 825 LPC 36858

GASPESIE LES ILES DE LA
MADELEINE 10 223 No BQ 444 LPC 413 CPC 143 NDP 59 Other 0 1059 LPC 36858

GASPESIE LES ILES DE LA
MADELEINE 15 223 No LPC 833 BQ 706 CPC 206 NDP 97 Other 0 1842 LPC 36858

GASPESIE LES ILES DE LA
MADELEINE 40 223 No LPC 2276 BQ 1772 CPC 411 NDP 235 Other 0 4694 LPC 36858

GASPESIE LES ILES DE LA
MADELEINE 55 223 No LPC 3089 BQ 2478 CPC 534 NDP 293 Other 0 6394 LPC 36858

GATINEAU 1 223 No GPC 54 Other 16 CPC 4 PPC 2 Other 0 76 LPC 52497
GATINEAU 65 223 No LPC 6249 BQ 2847 CPC 1344 NDP 1052 Other 0 11492 LPC 52497

HALIFAX 1 184 No LPC 14 CPC 6 NDP 3 GPC 1 Other 0 24 LPC 51248
HAMILTON CENTRE 130 194 No NDP 12651 LPC 6821 CPC 4010 PPC 1719 Other 0 25201 NDP 41280
HONORE MERCIER 1 219 No LPC 63 BQ 14 CPC 12 NDP 11 Other 0 100 LPC 48409
HONORE MERCIER 3 219 No LPC 88 BQ 25 CPC 13 NDP 13 Other 0 139 LPC 48409
HONORE MERCIER 60 219 No LPC 7183 BQ 2180 CPC 1274 NDP 835 Other 0 11472 LPC 48409

HULL AYLMER 31 213 No LPC 2656 BQ 743 NDP 739 CPC 541 Other 0 4679 LPC 51249
JOLIETTE 10 272 No LPC 512 BQ 339 CPC 88 Other 17 Other 0 956 BQ 56198
JOLIETTE 45 272 No BQ 5457 LPC 2586 CPC 965 NDP 518 Other 0 9526 BQ 56198

JONQUIERE 190 223 No BQ 16538 CPC 11894 LPC 8272 NDP 2430 Other 0 39134 BQ 45474
KENORA 12 150 No NDP 623 LPC 177 CPC 171 PPC 27 Other 0 998 CPC 26083

KINGS HANTS 2 228 No LPC 110 CPC 91 NDP 57 GPC 10 Other 0 268 LPC 44956
KITCHENER CENTRE 3 216 No GPC 289 NDP 179 LPC 157 CPC 157 Other 0 782 GPC 51179
KITCHENER CENTRE 145 216 No GPC 7426 CPC 5811 NDP 4309 LPC 4128 Other 0 21674 GPC 51179
LA POINTE DE L’ILE 182 262 No BQ 12267 LPC 9160 NDP 2729 CPC 1893 Other 0 26049 BQ 51080

LABRADOR 1 88 No LPC 24 NDP 6 CPC 5 PPC 1 Other 0 36 LPC 9653
LABRADOR 45 88 No LPC 1851 CPC 1231 NDP 939 PPC 117 Other 0 4138 LPC 9653

LAC SAINT JEAN 1 304 No BQ 43 LPC 32 CPC 7 NDP 0 Other 0 82 BQ 50197
LAC SAINT JEAN 50 304 No BQ 2369 CPC 1219 LPC 991 NDP 168 Other 0 4747 BQ 50197
LAC SAINT LOUIS 44 233 No LPC 3902 CPC 1380 NDP 1122 BQ 428 Other 0 6832 LPC 57725

LASALLE EMARD VERDUN 85 209 No LPC 6651 BQ 3334 NDP 2795 CPC 1217 Other 0 13997 LPC 47360
LAURENTIDES LABELLE 5 296 No BQ 1240 LPC 679 CPC 278 NDP 135 Other 0 2332 BQ 64123
LAURENTIDES LABELLE 267 296 No BQ 27135 LPC 13569 CPC 5716 NDP 3259 Other 0 49679 BQ 64123
LAURIER SAINTE MARIE 35 178 No LPC 2293 NDP 1935 BQ 1178 CPC 225 Other 0 5631 LPC 44676
LAURIER SAINTE MARIE 43 178 No LPC 2779 NDP 2515 BQ 1488 CPC 271 Other 0 7053 LPC 44676

LAVAL LES ILES 2 222 No LPC 54 BQ 34 CPC 14 PPC 3 Other 0 105 LPC 50597
LEVIS LOTBINIERE 240 298 No CPC 25708 BQ 10899 LPC 7268 NDP 3529 Other 0 47404 CPC 63407

LONDON FANSHAWE 200 240 No NDP 13374 LPC 7412 CPC 7266 PPC 2786 Other 0 30838 NDP 51422
LONG RANGE MOUNTAINS 1 265 No CPC 55 LPC 29 PPC 2 NDP 1 Other 0 87 LPC 36447
LONG RANGE MOUNTAINS 4 265 No CPC 149 LPC 111 NDP 8 PPC 8 Other 0 276 LPC 36447
LONG RANGE MOUNTAINS 10 265 No LPC 252 CPC 241 NDP 41 PPC 25 Other 0 559 LPC 36447
LONG RANGE MOUNTAINS 80 265 No LPC 3354 CPC 3231 NDP 676 PPC 365 Other 0 7626 LPC 36447
LONG RANGE MOUNTAINS 210 265 No LPC 11090 CPC 9929 NDP 2875 PPC 1195 Other 0 25089 LPC 36447

LONGUEUIL CHARLES
LEMOYNE 165 230 No LPC 8825 BQ 7425 NDP 2854 CPC 1913 Other 0 21017 LPC 47970

LONGUEUIL SAINT HUBERT 3 233 No LPC 136 BQ 120 NDP 22 CPC 10 Other 0 288 BQ 57235
LONGUEUIL SAINT HUBERT 25 233 No LPC 1653 BQ 1646 NDP 358 CPC 264 Other 0 3921 BQ 57235
LONGUEUIL SAINT HUBERT 42 233 No LPC 2747 BQ 2743 NDP 623 CPC 450 Other 0 6563 BQ 57235
LONGUEUIL SAINT HUBERT 87 233 No LPC 5749 BQ 5465 NDP 1325 CPC 956 Other 0 13495 BQ 57235
LONGUEUIL SAINT HUBERT 95 233 No LPC 6245 BQ 5924 NDP 1439 CPC 1050 Other 0 14658 BQ 57235
LONGUEUIL SAINT HUBERT 185 233 No LPC 13253 BQ 12901 NDP 3065 CPC 2317 Other 0 31536 BQ 57235

LOUIS SAINT LAURENT 136 255 No CPC 12121 BQ 4709 LPC 4290 NDP 1563 Other 0 22683 CPC 64098
MADAWASKA RESTIGOUCHE 40 144 No LPC 2479 CPC 1343 NDP 462 PPC 393 Other 0 4677 LPC 30546

MALPEQUE 1 90 No LPC 313 CPC 209 GPC 81 NDP 47 Other 0 650 LPC 23707
MANICOUAGAN 245 261 No BQ 15127 CPC 6332 LPC 5563 NDP 1379 Other 0 28401 BQ 35000

MEGANTIC L’ERABLE 2 243 No CPC 874 BQ 319 LPC 245 PPC 25 Other 0 1463 CPC 46428
MEGANTIC L’ERABLE 30 243 No CPC 5294 BQ 1953 LPC 1353 PPC 206 Other 0 8806 CPC 46428

MIRABEL 120 268 No BQ 10081 LPC 5497 CPC 2856 NDP 2239 Other 0 20673 BQ 63112
MIRAMICHI GRAND LAKE 3 158 No LPC 206 CPC 168 NDP 53 PPC 28 Other 0 455 CPC 32503
MIRAMICHI GRAND LAKE 25 158 No CPC 1611 LPC 1439 NDP 365 PPC 286 Other 0 3701 CPC 32503

MONCTON RIVERVIEW
DIEPPE 25 187 No LPC 2790 CPC 1304 NDP 914 PPC 329 Other 0 5337 LPC 45762

MONTARVILLE 1 216 No LPC 82 BQ 72 NDP 40 CPC 13 Other 0 207 BQ 57472
MONTARVILLE 20 216 No LPC 1226 BQ 1196 NDP 393 CPC 292 Other 0 3107 BQ 57472
MONTARVILLE 74 216 No BQ 5368 LPC 4781 NDP 1453 CPC 1251 Other 0 12853 BQ 57472
MONTARVILLE 165 216 No BQ 15186 LPC 12560 CPC 3281 NDP 3276 Other 0 34303 BQ 57472

MONTCALM 178 236 No BQ 20198 LPC 7308 CPC 4291 NDP 2284 Other 0 34081 BQ 51452
MONTMAGNY L’ISLET

KAMOURASKA RIVIERE DU
LOUP

1 271 No LPC 7 CPC 7 BQ 2 NDP 0 Other 0 16 CPC 47812

MONTMAGNY L’ISLET
KAMOURASKA RIVIERE DU

LOUP
10 271 No CPC 377 LPC 188 BQ 142 Other 27 Other 0 734 CPC 47812

MONTMAGNY L’ISLET
KAMOURASKA RIVIERE DU

LOUP
108 271 No CPC 8775 BQ 4140 LPC 2786 NDP 507 Other 0 16208 CPC 47812

NEW BRUNSWICK
SOUTHWEST 30 176 No CPC 2211 LPC 885 NDP 587 PPC 437 Other 0 4120 CPC 36629

NOTRE DAME DE GRACE
WESTMOUNT 32 214 No LPC 2439 NDP 800 CPC 675 GPC 214 Other 0 4128 LPC 45591
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ORLEANS 30 238 No LPC 2718 CPC 1667 NDP 944 PPC 174 Other 0 5503 LPC 75283
PAPINEAU 18 212 No LPC 115 NDP 47 BQ 26 CPC 11 Other 0 199 LPC 45423
PAPINEAU 28 212 No LPC 910 NDP 427 BQ 234 CPC 106 Other 0 1677 LPC 45423

PIERRE BOUCHER LES
PATRIOTES VERCHERES 175 239 No BQ 14367 LPC 6808 NDP 2493 CPC 2445 Other 0 26113 BQ 55246

QUEBEC 30 241 No LPC 1356 BQ 1045 CPC 825 NDP 709 Other 0 3935 LPC 51191
REPENTIGNY 185 270 No BQ 19380 LPC 10354 CPC 3357 NDP 3118 Other 0 36209 BQ 59701

RICHMOND ARTHABASKA 170 279 No CPC 12974 BQ 6465 LPC 3657 NDP 1401 Other 0 24497 CPC 57159
RIMOUSKI NEIGETTE

TEMISCOUATA LES BASQUES 184 249 No BQ 17148 LPC 8255 CPC 4423 NDP 2297 Other 0 32123 BQ 42138

RIVIERE DES MILLE ILES 196 235 No BQ 11382 LPC 10246 CPC 3060 NDP 2623 Other 0 27311 BQ 53366
RIVIERE DU NORD 35 243 No BQ 2216 LPC 926 CPC 549 NDP 375 Other 0 4066 BQ 57329

ROSEMONT LA PETITE
PATRIE 1 234 No NDP 178 LPC 140 BQ 128 CPC 12 Other 0 458 NDP 54988

ROSEMONT LA PETITE
PATRIE 35 234 No NDP 2778 LPC 1550 BQ 1194 CPC 235 Other 0 5757 NDP 54988

ROSEMONT LA PETITE
PATRIE 218 234 No NDP 21144 LPC 10105 BQ 8973 CPC 1801 Other 0 42023 NDP 54988

SAANICH GULF ISLANDS 1 236 No GPC 524 CPC 271 NDP 214 LPC 196 Other 0 1205 GPC 65522
SAANICH GULF ISLANDS 75 236 No GPC 4457 CPC 2309 NDP 2259 LPC 1984 Other 0 11009 GPC 65522

SACKVILLE PRESTON
CHEZZETCOOK 1 198 No LPC 15 CPC 10 NDP 7 PPC 5 Other 0 37 LPC 45606

SACKVILLE PRESTON
CHEZZETCOOK 135 198 No LPC 8143 NDP 6121 CPC 5213 PPC 904 Other 0 20381 LPC 45606

SAINT HYACINTHE BAGOT 213 256 No BQ 21200 LPC 9795 CPC 6038 NDP 5104 Other 0 42137 BQ 53031
SAINT JEAN 221 258 No BQ 14834 LPC 9166 CPC 4129 NDP 3014 Other 0 31143 BQ 59210

SAINT JOHN ROTHESAY 1 163 No LPC 124 CPC 80 NDP 33 GPC 5 Other 0 242 LPC 37450
SAINT LEONARD SAINT

MICHEL 1 201 No LPC 312 BQ 40 NDP 35 CPC 24 Other 0 411 LPC 41814

SAINT MAURICE CHAMPLAIN 1 291 No LPC 86 BQ 20 CPC 8 NDP 3 Other 0 117 LPC 56337
SAINT MAURICE CHAMPLAIN 2 291 No LPC 107 BQ 41 CPC 20 NDP 4 Other 0 172 LPC 56337

SALABERRY SUROIT 266 302 No BQ 26010 LPC 14805 CPC 6779 NDP 3999 Other 0 51593 BQ 60865
SHEFFORD 2 296 No BQ 122 LPC 95 CPC 33 NDP 32 Other 0 282 BQ 59626
SHEFFORD 205 296 No BQ 16151 LPC 12574 CPC 4648 NDP 2160 Other 0 35533 BQ 59626

SHERBROOKE 1 251 No LPC 36 BQ 19 CPC 8 NDP 3 Other 0 66 LPC 58185
SHERBROOKE 75 251 No LPC 3377 BQ 2488 NDP 1485 CPC 1151 Other 0 8501 LPC 58185

SOUTH SHORE ST.
MARGARETS 5 270 No LPC 223 CPC 201 NDP 135 GPC 19 Other 0 578 CPC 50004

SOUTH SHORE ST.
MARGARETS 20 270 No CPC 999 LPC 826 NDP 473 GPC 84 Other 0 2382 CPC 50004

SOUTH SHORE ST.
MARGARETS 25 270 No CPC 1222 LPC 994 NDP 594 GPC 107 Other 0 2917 CPC 50004

SOUTH SHORE ST.
MARGARETS 40 270 No CPC 2130 LPC 1651 NDP 934 GPC 174 Other 0 4889 CPC 50004

SOUTH SHORE ST.
MARGARETS 165 270 No CPC 9702 LPC 7926 NDP 4588 GPC 71 Other 0 22287 CPC 50004

ST. JOHN’S EAST 1 182 No LPC 131 NDP 122 CPC 78 PPC 2 Other 0 333 LPC 38171
ST. JOHN’S EAST 2 182 No NDP 165 LPC 147 CPC 92 PPC 8 Other 0 412 LPC 38171
ST. JOHN’S EAST 5 182 No NDP 317 LPC 236 CPC 135 PPC 17 Other 0 705 LPC 38171
ST. JOHN’S EAST 10 182 No NDP 522 LPC 455 CPC 325 PPC 39 Other 0 1341 LPC 38171
ST. JOHN’S EAST 20 182 No NDP 1131 LPC 958 CPC 536 PPC 59 Other 0 2684 LPC 38171
ST. JOHN’S EAST 40 182 No NDP 2255 LPC 2119 CPC 1133 PPC 137 Other 0 5644 LPC 38171
ST. JOHN’S EAST 65 182 No LPC 3854 NDP 3514 CPC 1860 PPC 211 Other 0 9439 LPC 38171
ST. JOHN’S EAST 115 182 No LPC 7052 NDP 6385 CPC 3476 PPC 383 Other 0 17296 LPC 38171
ST. JOHN’S EAST 160 182 No LPC 10728 NDP 9134 CPC 5205 PPC 574 Other 0 25641 LPC 38171
ST. JOHN’S EAST 175 182 No LPC 14411 NDP 11469 CPC 6453 PPC 671 Other 0 33004 LPC 38171

ST. JOHN’S SOUTH MOUNT
PEARL 1 207 No LPC 2 CPC 2 NDP 2 PPC 0 Other 0 6 LPC 34676

ST. JOHN’S SOUTH MOUNT
PEARL 25 207 No LPC 1541 NDP 742 CPC 486 PPC 64 Other 0 2833 LPC 34676

SYDNEY VICTORIA 1 205 No CPC 99 LPC 31 NDP 16 PPC 6 Other 0 152 LPC 36312
SYDNEY VICTORIA 30 205 No CPC 1618 LPC 1611 NDP 721 PPC 158 Other 0 4108 LPC 36312
SYDNEY VICTORIA 116 205 No LPC 6364 CPC 5815 NDP 3370 PPC 554 Other 0 16103 LPC 36312

TERREBONNE 153 207 No BQ 12700 LPC 10024 CPC 3250 NDP 2485 Other 0 28459 BQ 58949
TIMMINS JAMES BAY 148 176 No NDP 9030 CPC 7183 LPC 5955 PPC 3578 Other 0 25746 NDP 34570

TOBIQUE MACTAQUAC 20 178 No CPC 2278 LPC 945 NDP 367 PPC 258 Other 0 3848 CPC 34400
TORONTO CENTRE 5 137 No LPC 742 NDP 289 CPC 216 GPC 116 Other 0 1363 LPC 45817
TORONTO CENTRE 15 137 No LPC 1946 NDP 849 CPC 633 GPC 318 Other 0 3746 LPC 45817
TORONTO CENTRE 28 137 No LPC 3293 NDP 1538 CPC 1006 GPC 543 Other 0 6380 LPC 45817
TORONTO CENTRE 50 137 No LPC 5468 NDP 2669 CPC 1546 GPC 949 Other 0 10632 LPC 45817

TROIS RIVIERES 5 245 No LPC 247 BQ 184 CPC 159 NDP 58 Other 0 648 BQ 58110
TROIS RIVIERES 40 245 No LPC 1555 CPC 1488 BQ 1443 NDP 508 Other 0 4994 BQ 58110
TROIS RIVIERES 90 245 No CPC 3615 BQ 3520 LPC 3472 NDP 1378 Other 0 11985 BQ 58110
TROIS RIVIERES 155 245 No CPC 6646 BQ 6591 LPC 6210 NDP 2472 Other 0 21919 BQ 58110
TROIS RIVIERES 165 245 No CPC 7131 BQ 7047 LPC 6661 NDP 2677 Other 0 23516 BQ 58110
TROIS RIVIERES 180 245 No CPC 7610 BQ 7606 LPC 7326 NDP 2874 Other 0 25416 BQ 58110
TROIS RIVIERES 188 245 No CPC 7782 BQ 7762 LPC 7574 NDP 2924 Other 0 26042 BQ 58110
TROIS RIVIERES 213 245 No CPC 10196 BQ 10112 LPC 9879 NDP 3420 Other 0 33607 BQ 58110

VAUDREUIL SOULANGES 1 264 No LPC 51 CPC 7 NDP 3 BQ 1 Other 0 62 LPC 64564
VILLE MARIE LE SUD OUEST

ILE DES SOEURS 120 220 No LPC 8694 NDP 3368 CPC 2193 BQ 2190 Other 0 16445 LPC 49423

WEST NOVA 5 244 No CPC 443 LPC 137 NDP 98 PPC 39 Other 0 717 CPC 43871
WEST NOVA 49 244 No CPC 3884 LPC 1883 NDP 867 PPC 426 Other 0 7060 CPC 43871

WINDSOR WEST 190 236 No NDP 14400 LPC 9269 CPC 6525 PPC 2696 Other 0 32890 NDP 48693
WINNIPEG CENTRE 161 182 No NDP 9045 LPC 5606 CPC 2487 PPC 826 Other 0 17964 NDP 29749

BARRIE SPRINGWATER ORO
MEDONTE 21 67 No LIB 6575 PCP 6370 NPD 1251 GPO 623 Other 0 14819 PCP 38862

BARRIE SPRINGWATER ORO
MEDONTE 65 67 No PCP 15950 LIB 15368 NPD 2960 GPO 1637 Other 0 35915 PCP 38862

BEACHES EAST YORK 22 41 No LIB 6871 NPD 6472 PCP 3991 GPO 1939 Other 0 19273 LIB 40029
DUFFERIN CALEDON 4 61 No PCP 986 GPO 471 LIB 306 NPD 252 Other 0 2015 PCP 45354

ESSEX 16 58 No PCP 7234 NPD 4656 LIB 1254 Other 1243 Other 0 14387 PCP 47520
ETOBICOKE NORD 3 38 No PCP 678 LIB 329 NPD 191 Other 38 Other 0 1236 PCP 24580
ETOBICOKE NORD 6 38 No PCP 2409 LIB 1068 NPD 613 GPO 132 Other 0 4222 PCP 24580

GLENGARRY PRESCOTT
RUSSELL 8 99 No PCP 3420 LIB 2861 NPD 768 Other 452 Other 0 7501 PCP 43573

GLENGARRY PRESCOTT
RUSSELL 12 99 No PCP 4671 LIB 3954 NPD 1028 Other 587 Other 0 10240 PCP 43573

GLENGARRY PRESCOTT
RUSSELL 82 99 No PCP 13003 LIB 11258 NPD 2447 Other 1392 Other 0 28100 PCP 43573

GUELPH 1 86 No GPO 400 PCP 97 LIB 62 NPD 47 Other 0 606 GPO 54185
GUELPH 9 86 No GPO 3635 PCP 1270 LIB 801 NPD 540 Other 0 6246 GPO 54185

HALDIMAND NORFOLK 54 62 No Other 14124 PCP 12047 NPD 5427 LIB 2772 Other 0 34370 IND 41765
HAMILTON CENTRE 6 53 No NPD 1994 PCP 671 LIB 430 GPO 276 Other 0 3371 NDP 28326

HURON BRUCE 13 87 No PCP 1090 NPD 414 LIB 348 Other 166 Other 0 2018 PCP 46129
KANATA CARLETON 15 54 No PCP 5459 NPD 3271 LIB 2927 GPO 760 Other 0 12417 PCP 45176

KINGSTON ET LES ILES 19 86 No LIB 7459 NPD 5106 PCP 4920 GPO 560 Other 0 18045 LIB 47947
KINGSTON ET LES ILES 23 86 No LIB 8579 NPD 5862 PCP 5771 GPO 646 Other 0 20858 LIB 47947

LAMBTON KENT MIDDLESEX 19 77 No PCP 8045 NPD 2723 LIB 1310 Other 1060 Other 0 13138 PCP 41372
LEEDS GRENVILLE

THOUSAND ISLANDS ET
RIDEAU LAKES

15 97 No PCP 4539 LIB 1834 NPD 1393 GPO 577 Other 0 8343 PCP 41729
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LONDON CENTRE NORD 1 82 No PCP 10 LIB 9 NPD 5 GPO 1 Other 0 25 NDP 42410
NEPEAN 3 51 No PCP 67 LIB 43 NPD 25 Other 7 Other 0 142 PCP 43247
NEPEAN 19 51 No PCP 3364 LIB 2797 NPD 1613 GPO 331 Other 0 8105 PCP 43247

NIPISSING 15 72 No PCP 3832 NPD 2123 LIB 925 GPO 271 Other 0 7151 PCP 29848
ORLEANS 35 57 No LIB 17575 PCP 12159 NPD 5412 GPO 1823 Other 0 36969 LIB 51213

OTTAWA CENTRE 1 120 No NPD 237 LIB 195 PCP 125 GPO 50 Other 0 607 NDP 55196
OTTAWA OUEST NEPEAN 44 70 No NPD 8563 PCP 8457 LIB 5317 GPO 972 Other 0 23309 NDP 41814

OTTAWA SUD 17 68 No LIB 5758 NPD 3399 PCP 2872 GPO 637 Other 0 12666 LIB 39851
PARRY SOUND MUSKOKA 96 96 No PCP 20216 GPO 18102 NPD 3391 Other 0 Other 0 41709 PCP 44277

PICKERING UXBRIDGE 17 55 No PCP 6635 LIB 4448 NPD 2189 GPO 721 Other 0 13993 PCP 42543
RENFREW NIPISSING

PEMBROKE 14 98 No PCP 1998 NPD 781 LIB 371 Other 166 Other 0 3316 PCP 38701

SUDBURY 1 89 No NPD 8 LIB 6 PCP 5 Other 1 Other 0 20 NDP 28463
VAUGHAN WOODBRIDGE 1 38 No PCP 309 LIB 171 NPD 41 GPO 19 Other 0 540 PCP 35378
VAUGHAN WOODBRIDGE 15 38 No PCP 7015 LIB 4422 NPD 725 Other 320 Other 0 12482 PCP 35378

WINDSOR TECUMSEH 37 69 No PCP 13040 NPD 8855 LIB 4111 Other 875 Other 0 26881 PCP 37062
YORK SIMCOE 3 50 No PCP 1975 LIB 602 GPO 269 NPD 246 Other 0 3092 PCP 35515

YORK SUD WESTON 56 73 No PCP 10259 NPD 9516 LIB 6606 GPO 701 Other 0 27082 PCP 29972
ABITIBI-OUEST 40 139 Yes CAQ 3876 PQ 1308 QS 849 PCQ 590 PLQ 404 7027 CAQ 22087

ACADIE 14 165 No PLQ 828 CAQ 344 QS 274 PCQ 243 PQ 227 1916 PLQ 25415
ANJOU-LOUIS-RIEL 103 133 No PLQ 5223 CAQ 4803 QS 2633 PQ 1656 PCQ 1323 15638 CAQ 26111
ANJOU-LOUIS-RIEL 115 133 No PLQ 5844 CAQ 5430 QS 2838 PQ 1832 PCQ 1464 17408 CAQ 26111

ARGENTEUIL 31 177 Yes CAQ 4120 PQ 1120 PLQ 952 PCQ 952 QS 575 7719 CAQ 31671
BEAUCE-NORD 1 151 No CAQ 150 PCQ 112 PQ 18 PLQ 9 QS 4 293 CAQ 33445
BEAUCE-NORD 82 151 No CAQ 8326 PCQ 7993 PQ 1081 QS 769 PLQ 498 18667 CAQ 33445
BEAUCE-NORD 149 151 No CAQ 14365 PCQ 14148 PQ 1955 QS 1425 PLQ 912 32805 CAQ 33445

BEAUCE-SUD 90 180 No CAQ 9148 PCQ 7916 PQ 809 QS 724 PLQ 598 19195 CAQ 36987
BEAUCE-SUD 171 180 No CAQ 15819 PCQ 15373 QS 1427 PQ 1423 PLQ 995 35037 CAQ 36987

BERTRAND 6 181 No CAQ 632 PQ 216 QS 149 PLQ 98 PCQ 78 1173 CAQ 34427
BONAVENTURE 1 134 No CAQ 50 PQ 30 QS 8 PLQ 3 PCQ 3 94 CAQ 22174

BOURASSA-SAUVE 4 164 No PLQ 214 CAQ 118 QS 77 PCQ 46 PQ 38 493 PLQ 23752
BROME-MISSISQUOI 4 233 No CAQ 224 PCQ 69 QS 68 PQ 61 PLQ 45 467 CAQ 43292

CAMILLE-LAURIN 1 173 No CAQ 128 PQ 91 PLQ 38 PCQ 18 Other 0 275 PQ 28358
CAMILLE-LAURIN 13 173 No CAQ 1553 PQ 1262 PLQ 313 PCQ 187 Other 0 3315 PQ 28358
CAMILLE-LAURIN 40 173 No PQ 3424 CAQ 3382 PLQ 1048 PCQ 495 Other 0 8349 PQ 28358
CAMILLE-LAURIN 55 173 No PQ 4565 CAQ 4173 PLQ 1394 PCQ 676 Other 0 10808 PQ 28358
CAMILLE-LAURIN 67 173 No PQ 5349 CAQ 4557 PLQ 1757 PCQ 798 Other 0 12461 PQ 28358
CAMILLE-LAURIN 83 173 No PQ 6333 CAQ 5139 PLQ 2245 PCQ 976 Other 0 14693 PQ 28358
CAMILLE-LAURIN 96 173 No PQ 7232 CAQ 5549 PLQ 2500 PCQ 1135 Other 0 16416 PQ 28358
CAMILLE-LAURIN 110 173 Yes PQ 8067 CAQ 6098 PLQ 3003 PCQ 1260 Other 0 18428 PQ 28358

CHAPLEAU 19 189 Yes CAQ 1869 PLQ 415 PCQ 281 QS 263 PQ 243 3071 CAQ 30945
CHARLEVOIX-COTE-DE-

BEAUPRE 1 189 No CAQ 358 QS 117 PQ 77 PCQ 51 PLQ 39 642 CAQ 37216

CHARLEVOIX-COTE-DE-
BEAUPRE 21 189 Yes CAQ 1468 QS 512 PQ 504 PCQ 324 PLQ 125 2933 CAQ 37216

CHAUVEAU 2 205 No CAQ 450 PCQ 238 QS 50 PQ 46 PLQ 28 812 CAQ 42860
CHOMEDEY 1 205 No CAQ 40 PLQ 19 PQ 7 PCQ 4 QS 3 73 PLQ 31971
CHOMEDEY 17 205 No PLQ 1534 CAQ 1357 PCQ 711 PQ 339 QS 258 4199 PLQ 31971
CHOMEDEY 35 205 No PLQ 2431 CAQ 1628 PCQ 1331 PQ 414 QS 356 6160 PLQ 31971

CHUTES-DE-LA-CHAUDIERE 8 203 No CAQ 311 PCQ 131 PQ 52 QS 32 PLQ 17 543 CAQ 46467
CHUTES-DE-LA-CHAUDIERE 25 203 Yes CAQ 1919 PCQ 1057 PQ 362 QS 281 PLQ 184 3803 CAQ 46467
CHUTES-DE-LA-CHAUDIERE 113 203 Yes CAQ 10097 PCQ 5975 PQ 2447 QS 1930 PLQ 1132 21581 CAQ 46467

DEUX-MONTAGNES 6 165 No CAQ 966 PQ 268 QS 189 PLQ 127 PCQ 122 1672 CAQ 33165
DRUMMOND-BOIS-FRANCS 24 177 Yes CAQ 3329 PCQ 904 PQ 724 QS 397 PLQ 169 5523 CAQ 35844

DUBUC 1 146 No CAQ 315 PQ 55 PCQ 53 QS 31 PLQ 9 463 CAQ 26581
DUBUC 32 146 Yes CAQ 5453 PQ 1326 PCQ 815 QS 605 PLQ 244 8443 CAQ 26581

DUPLESSIS 4 158 No QS 30 CAQ 29 PCQ 28 PLQ 20 PQ 10 117 CAQ 19273
DUPLESSIS 64 158 No CAQ 2611 PQ 1690 PCQ 1250 QS 749 PLQ 328 6628 CAQ 19273
DUPLESSIS 99 158 Yes CAQ 6174 PQ 3396 PCQ 2248 QS 1133 PLQ 602 13553 CAQ 19273

FABRE 10 177 No CAQ 964 PLQ 553 PCQ 237 PQ 216 QS 170 2140 CAQ 33889
FABRE 173 177 No CAQ 10693 PLQ 10395 PCQ 5107 QS 3556 PQ 3283 33034 CAQ 33889

GATINEAU 4 217 No CAQ 133 PCQ 63 PLQ 62 QS 24 PQ 22 304 CAQ 36076
GOUIN 1 147 No QS 263 CAQ 68 PQ 40 PLQ 32 PCQ 14 417 QS 28188
GOUIN 13 147 Yes QS 1796 CAQ 494 PQ 455 PLQ 225 PCQ 93 3063 QS 28188

HOCHELAGA-MAISONNEUVE 30 137 Yes QS 2073 CAQ 643 PQ 562 PLQ 339 PCQ 221 3838 QS 24645
HULL 1 193 No CAQ 40 PLQ 26 PCQ 13 QS 8 Other 8 95 CAQ 31270
HULL 27 193 No CAQ 895 PLQ 814 QS 664 PQ 295 PCQ 292 2960 CAQ 31270

HUNTINGDON 133 158 Yes CAQ 9889 PLQ 3466 PCQ 3270 PQ 2749 QS 2579 21953 CAQ 28588
ILES-DE-LA-MADELEINE 2 53 No PQ 125 CAQ 43 QS 11 PLQ 10 PCQ 1 190 PQ 8364
ILES-DE-LA-MADELEINE 14 53 No CAQ 836 PQ 801 PLQ 145 QS 114 PCQ 12 1908 PQ 8364
ILES-DE-LA-MADELEINE 18 53 No PQ 1209 CAQ 1013 PLQ 172 QS 145 PCQ 21 2560 PQ 8364
ILES-DE-LA-MADELEINE 32 53 No PQ 2320 CAQ 1943 PLQ 420 QS 241 PCQ 53 4977 PQ 8364
ILES-DE-LA-MADELEINE 46 53 Yes PQ 3515 CAQ 3054 PLQ 560 QS 362 PCQ 84 7575 PQ 8364

JACQUES-CARTIER 14 163 Yes PLQ 1777 CAQ 363 PCQ 283 PQ 116 QS 110 2649 PLQ 27071
JEAN-LESAGE 8 161 No QS 87 CAQ 35 PQ 19 PCQ 12 PLQ 5 158 QS 29737
JEAN-LESAGE 81 161 Yes QS 3930 CAQ 2643 PCQ 1506 PQ 1140 PLQ 406 9625 QS 29737

JEANNE-MANCE-VIGER 19 164 Yes PLQ 1790 CAQ 749 PCQ 411 QS 317 PQ 193 3460 PLQ 26019
JOLIETTE 24 221 No CAQ 2153 PQ 1451 QS 439 PCQ 342 PLQ 142 4527 CAQ 39330
JOLIETTE 78 221 No CAQ 5305 PQ 4054 QS 1381 PCQ 1139 PLQ 354 12233 CAQ 39330

JONQUIERE 6 160 No CAQ 609 PQ 186 PCQ 66 QS 61 PLQ 17 939 CAQ 30460
JONQUIERE 15 160 Yes CAQ 1502 PQ 440 PCQ 160 QS 127 PLQ 91 2320 CAQ 30460
JONQUIERE 18 160 Yes CAQ 2298 PQ 657 PCQ 264 QS 190 PLQ 115 3524 CAQ 30460
JONQUIERE 151 160 Yes CAQ 17308 PQ 5602 PCQ 2771 QS 2461 PLQ 615 28757 CAQ 30460

L’ASSOMPTION 8 156 Yes CAQ 1715 PQ 309 QS 199 PCQ 111 PLQ 94 2428 CAQ 31790
LA PRAIRIE 2 161 No CAQ 66 PLQ 22 QS 20 PQ 20 PCQ 10 138 CAQ 34252

LAPORTE 7 187 No CAQ 850 PLQ 505 QS 233 PQ 207 PCQ 108 1903 CAQ 32632
LAPORTE 122 187 No PLQ 6297 CAQ 6125 QS 3532 PQ 2381 PCQ 1517 19852 CAQ 32632
LAPORTE 174 187 No CAQ 9758 PLQ 9175 QS 5352 PQ 3809 PCQ 2286 30380 CAQ 32632

LAURIER-DORION 15 150 No QS 756 PLQ 603 CAQ 241 PCQ 209 PQ 173 1982 QS 26182
LAURIER-DORION 21 150 No QS 1125 PLQ 833 CAQ 368 PQ 283 PCQ 259 2868 QS 26182

LAVAL-DES-RAPIDES 8 184 No CAQ 846 PLQ 443 PQ 315 QS 284 PCQ 121 2009 CAQ 32832
LAVAL-DES-RAPIDES 144 184 Yes CAQ 8014 PLQ 7524 QS 4201 PQ 3387 PCQ 2292 25418 CAQ 32832

LEVIS 17 185 No CAQ 1374 PCQ 234 PLQ 222 PQ 189 QS 136 2155 CAQ 36646
LEVIS 19 185 Yes CAQ 1643 PCQ 366 PQ 273 PLQ 244 QS 186 2712 CAQ 36646

LOTBINIERE-FRONTENAC 3 209 No PCQ 292 CAQ 252 PLQ 50 QS 40 PQ 36 670 CAQ 41929
LOTBINIERE-FRONTENAC 13 209 No CAQ 1340 PCQ 554 PLQ 192 QS 179 PQ 153 2418 CAQ 41929

LOUIS-HEBERT 4 164 No CAQ 229 PCQ 103 PQ 29 QS 22 PLQ 18 401 CAQ 37360
MARGUERITE-BOURGEOYS 40 174 No PLQ 3883 CAQ 3285 PQ 817 QS 805 PCQ 784 9574 PLQ 27135

MARIE-VICTORIN 6 151 No CAQ 587 PQ 321 QS 152 PLQ 92 PCQ 49 1201 CAQ 27177
MARIE-VICTORIN 57 151 No CAQ 4176 PQ 2827 QS 2155 PLQ 1071 PCQ 703 10932 CAQ 27177

MARQUETTE 1 157 No CAQ 85 PLQ 80 QS 28 PQ 27 PCQ 22 242 PLQ 25442
MARQUETTE 2 157 No CAQ 85 PLQ 80 QS 28 PQ 27 PCQ 22 242 PLQ 25442
MARQUETTE 41 157 No PLQ 2510 CAQ 995 PCQ 583 QS 473 PQ 323 4884 PLQ 25442
MARQUETTE 43 157 No PLQ 2693 CAQ 1011 PCQ 611 QS 491 PQ 334 5140 PLQ 25442

MASSON 151 159 Yes CAQ 17512 PQ 6156 QS 4309 PCQ 2850 PLQ 2620 33447 CAQ 34932
MATANE-MATAPEDIA 9 179 Yes PQ 1104 CAQ 346 PCQ 79 QS 68 PLQ 37 1634 PQ 29623
MATANE-MATAPEDIA 81 179 Yes PQ 9252 CAQ 2328 PCQ 991 QS 548 PLQ 254 13373 PQ 29623

MAURICE-RICHARD 5 165 No QS 330 CAQ 290 PQ 168 PLQ 141 PCQ 33 962 QS 30793
MAURICE-RICHARD 33 165 No QS 2398 CAQ 2363 PQ 1196 PLQ 949 PCQ 251 7157 QS 30793
MAURICE-RICHARD 34 165 No QS 2449 CAQ 2394 PQ 1208 PLQ 996 PCQ 259 7306 QS 30793

MEGANTIC 3 149 No CAQ 442 PCQ 144 PQ 94 QS 91 PLQ 30 801 CAQ 28009
MEGANTIC 136 149 Yes CAQ 11958 PCQ 5945 PQ 3366 QS 3183 PLQ 1509 25961 CAQ 28009
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MERCIER 37 154 Yes QS 2299 PLQ 774 PQ 646 CAQ 557 PCQ 185 4461 QS 26443
MILLE-ILES 10 149 No CAQ 1495 PLQ 967 PQ 544 PCQ 347 QS 334 3687 PLQ 29064
MILLE-ILES 144 149 No PLQ 9140 CAQ 8535 QS 3496 PQ 3357 PCQ 2996 27524 PLQ 29064

MONT-ROYAL-OUTREMONT 16 208 No PLQ 74 QS 15 PCQ 10 CAQ 5 PQ 2 106 PLQ 28250
MONT-ROYAL-OUTREMONT 21 208 No PLQ 74 QS 15 PCQ 10 CAQ 5 PQ 2 106 PLQ 28250
MONT-ROYAL-OUTREMONT 30 208 No PLQ 462 QS 208 CAQ 145 PQ 136 PCQ 61 1012 PLQ 28250
MONT-ROYAL-OUTREMONT 42 208 Yes PLQ 1111 QS 407 CAQ 385 PQ 269 PCQ 202 2374 PLQ 28250

NELLIGAN 15 182 Yes PLQ 2057 CAQ 937 PCQ 540 PQ 233 QS 211 3978 PLQ 31264
NOTRE-DAME-DE-GRACE 16 159 Yes PLQ 1989 QS 508 CAQ 355 PCQ 256 PQ 239 3347 PLQ 22550

PONTIAC 2 187 No PLQ 80 PCQ 27 CAQ 12 Other 11 Other 7 137 PLQ 27473
PONTIAC 10 187 No PLQ 660 PCQ 134 CAQ 83 Other 58 Other 20 955 PLQ 27473
PONTIAC 20 187 Yes PLQ 1192 CAQ 353 PCQ 262 QS 92 Other 72 1971 PLQ 27473
PREVOST 26 165 No CAQ 1459 PQ 687 QS 597 PCQ 390 PLQ 246 3379 CAQ 33927

RENE-LEVESQUE 27 121 No CAQ 2016 PQ 830 PCQ 378 QS 308 PLQ 59 3591 CAQ 19185
RENE-LEVESQUE 48 121 Yes CAQ 4183 PQ 1534 PCQ 737 QS 550 PLQ 119 7123 CAQ 19185

RIMOUSKI 135 167 No CAQ 8996 PQ 6695 QS 4767 PCQ 1065 PLQ 624 22147 CAQ 32801
ROBERT-BALDWIN 21 174 Yes PLQ 3415 CAQ 882 PCQ 777 QS 280 PQ 227 5581 PLQ 27645

ROSEMONT 1 186 No CAQ 200 QS 161 PQ 135 PLQ 48 Other 21 565 QS 34770
ROSEMONT 24 186 No QS 2060 CAQ 1718 PQ 1360 PLQ 547 PCQ 206 5891 QS 34770
ROSEMONT 35 186 No QS 3032 CAQ 2157 PQ 1824 PLQ 725 PCQ 300 8038 QS 34770
ROSEMONT 61 186 No QS 4880 CAQ 3360 PQ 3025 PLQ 1352 PCQ 534 13151 QS 34770
ROSEMONT 67 186 Yes QS 5329 CAQ 3497 PQ 3223 PLQ 1473 PCQ 576 14098 QS 34770
ROUSSEAU 9 157 Yes CAQ 1012 PQ 330 PCQ 180 QS 132 PLQ 46 1700 CAQ 27912

ROUYN-NORANDA-
TEMISCAMINGUE 38 166 No CAQ 2497 QS 1565 PQ 563 PCQ 506 PLQ 385 5516 CAQ 28554

ROUYN-NORANDA-
TEMISCAMINGUE 83 166 No CAQ 5521 QS 3872 PQ 1403 PCQ 1124 PLQ 666 12586 CAQ 28554

ROUYN-NORANDA-
TEMISCAMINGUE 86 166 Yes CAQ 5687 QS 3990 PQ 1449 PCQ 1159 PLQ 678 12963 CAQ 28554

ROUYN-NORANDA-
TEMISCAMINGUE 132 166 Yes CAQ 10187 QS 6822 PQ 2551 PCQ 1849 PLQ 1005 22414 CAQ 28554

SAINT-FRANCOIS 1 205 No CAQ 67 PCQ 28 QS 23 PQ 15 PLQ 6 139 CAQ 40186
SAINT-FRANCOIS 6 205 No CAQ 335 QS 220 PLQ 194 PCQ 98 PQ 66 913 CAQ 40186
SAINT-FRANCOIS 94 205 No CAQ 7519 QS 4851 PCQ 1832 PQ 1549 PLQ 1514 17265 CAQ 40186

SAINT-HENRI-SAINTE-ANNE 1 197 No PLQ 49 QS 29 Other 4 CAQ 3 PQ 3 88 PLQ 31217
SAINT-HENRI-SAINTE-ANNE 123 197 Yes PLQ 7554 QS 5976 CAQ 3864 PQ 1792 PCQ 1257 20443 PLQ 31217
SAINT-HENRI-SAINTE-ANNE 171 197 Yes PLQ 10352 QS 7906 CAQ 5080 PQ 2384 PCQ 1830 27552 PLQ 31217

SAINT-JEAN 197 215 Yes CAQ 18739 PQ 7239 QS 5495 PCQ 3168 PLQ 2235 36876 CAQ 42484
SAINT-LAURENT 5 192 No PLQ 339 PCQ 88 CAQ 72 QS 48 PQ 21 568 PLQ 26904
SAINT-LAURENT 16 192 Yes PLQ 963 PCQ 281 CAQ 220 QS 190 PQ 96 1750 PLQ 26904

SAINTE-MARIE-SAINT-
JACQUES 1 158 No QS 152 PQ 125 CAQ 86 PLQ 52 PCQ 18 433 QS 22281

SAINTE-MARIE-SAINT-
JACQUES 17 158 Yes QS 878 PQ 363 CAQ 307 PLQ 292 PCQ 100 1940 QS 22281

SAINTE-ROSE 28 182 Yes CAQ 3730 PLQ 1432 PQ 868 QS 718 PCQ 513 7261 CAQ 36077
SAINTE-ROSE 166 182 Yes CAQ 13267 PLQ 8018 QS 4606 PQ 4210 PCQ 3162 33263 CAQ 36077
SHERBROOKE 75 186 No QS 4834 CAQ 3219 PQ 988 PCQ 835 PLQ 570 10446 QS 36664
SHERBROOKE 121 186 No QS 8763 CAQ 7692 PQ 2001 PCQ 1579 PLQ 1229 21264 QS 36664

SOULANGES 183 199 Yes CAQ 14989 PLQ 8187 PCQ 4633 QS 3858 PQ 3665 35332 CAQ 39358
TASCHEREAU 42 178 Yes QS 2534 PQ 1329 CAQ 1298 PCQ 560 PLQ 346 6067 QS 33919

TROIS-RIVIERES 20 191 Yes CAQ 1096 QS 188 PQ 180 PCQ 156 PLQ 84 1704 CAQ 36859
TROIS-RIVIERES 62 191 Yes CAQ 4812 QS 1212 PQ 1116 PCQ 985 PLQ 529 8654 CAQ 36859

UNGAVA 2 111 No CAQ 30 PLQ 26 PCQ 5 PQ 4 QS 2 67 CAQ 8635
UNGAVA 10 111 No CAQ 136 PQ 48 PLQ 33 PCQ 29 QS 26 272 CAQ 8635
UNGAVA 86 111 No CAQ 2477 QS 1450 PQ 837 PLQ 812 PCQ 625 6201 CAQ 8635

VANIER-LES RIVIERES 199 203 Yes CAQ 20142 PCQ 8291 PQ 5550 QS 4990 PLQ 2651 41624 CAQ 43222
VERDUN 8 162 No PLQ 264 QS 217 CAQ 199 PQ 72 PCQ 36 788 QS 30068
VERDUN 9 162 No PLQ 304 QS 265 CAQ 218 PQ 81 PCQ 40 908 QS 30068
VERDUN 40 162 No PLQ 1620 QS 1539 CAQ 1123 PQ 403 PCQ 349 5034 QS 30068
VERDUN 121 162 No QS 6378 PLQ 5319 CAQ 3749 PQ 1500 PCQ 1140 18086 QS 30068
VERDUN 135 162 No QS 6672 PLQ 6508 CAQ 4625 PQ 1726 PCQ 1282 20813 QS 30068
VERDUN 136 162 No QS 6905 PLQ 6596 CAQ 4718 PQ 1752 PCQ 1295 21266 QS 30068
VERDUN 142 162 No PLQ 7303 QS 7082 CAQ 5323 PQ 1981 PCQ 1386 23075 QS 30068
VERDUN 152 162 No PLQ 8267 QS 8168 CAQ 6363 PQ 2334 PCQ 1522 26654 QS 30068

VIAU 16 132 No PLQ 1440 QS 1074 CAQ 814 PQ 358 PCQ 212 3898 PLQ 20560
VIMONT 18 153 No PLQ 1122 CAQ 808 PCQ 511 QS 346 PQ 279 3066 CAQ 31664
VIMONT 64 153 No CAQ 4170 PLQ 4160 PCQ 1754 QS 1458 PQ 1342 12884 CAQ 31664
VIMONT 147 153 Yes CAQ 10660 PLQ 9294 PCQ 4034 QS 3462 PQ 3263 30713 CAQ 31664

WESTMOUNT-SAINT-LOUIS 2 178 No PLQ 20 PCQ 11 QS 6 CAQ 3 Other 2 42 PLQ 18572
ABITIBI BAIE JAMES

NUNAVIK EEYOU 10 197 False BQ 239 LPC 223 CPC 141 NDP 107 Other 0 710 BQ 31656

ABITIBI BAIE JAMES
NUNAVIK EEYOU 110 197 False BQ 6529 LPC 4608 CPC 3043 NDP 1814 Other 0 15994 BQ 31656

ABITIBI TEMISCAMINGUE 1 270 False BQ 38 CPC 19 LPC 16 GPC 13 Other 0 86 BQ 50155
ABITIBI TEMISCAMINGUE 15 270 False BQ 702 LPC 457 CPC 303 NDP 196 Other 0 1658 BQ 50155
ABITIBI TEMISCAMINGUE 75 270 False BQ 4673 LPC 2695 CPC 1792 NDP 1326 Other 0 10486 BQ 50155
AHUNTSIC CARTIERVILLE 1 231 False LPC 22 BQ 2 CPC 1 GPC 1 Other 0 26 LPC 55111

AVALON 25 213 False LPC 1316 CPC 889 NDP 258 GPC 130 Other 0 2593 LPC 41334
BEAUCE 7 242 False CPC 762 PPC 521 BQ 354 LPC 243 Other 0 1880 CPC 59429
BEAUCE 65 242 False CPC 7919 PPC 5789 BQ 2836 LPC 2440 Other 0 18984 CPC 59429
BEAUCE 205 242 False CPC 19871 PPC 14576 BQ 7079 LPC 5813 Other 0 47339 CPC 59429

BEAUPORT COTE DE
BEAUPRE ILE D’ORLEANS

CHARLEVOIX
1 246 False BQ 184 LPC 70 CPC 62 NDP 12 Other 0 328 BQ 50635

BEAUPORT LIMOILOU 130 200 False BQ 7556 LPC 6478 CPC 6340 NDP 2963 Other 0 23337 BQ 50191
BEAUSEJOUR 1 221 False LPC 474 GPC 168 CPC 136 NDP 39 Other 0 817 LPC 53685
BEAUSEJOUR 5 221 False LPC 661 GPC 319 CPC 229 NDP 86 Other 0 1295 LPC 53685
BEAUSEJOUR 30 221 False LPC 2086 GPC 1472 CPC 778 NDP 282 Other 0 4618 LPC 53685

BECANCOUR NICOLET
SAUREL 1 237 False BQ 36 LPC 27 CPC 4 NDP 0 Other 0 67 BQ 52337

BELOEIL CHAMBLY 1 270 False BQ 239 LPC 88 NDP 77 CPC 27 Other 0 431 BQ 69490
BELOEIL CHAMBLY 12 270 False BQ 1527 LPC 821 NDP 409 CPC 269 Other 0 3026 BQ 69490
BELOEIL CHAMBLY 27 270 False BQ 3359 LPC 1646 NDP 974 CPC 481 Other 0 6460 BQ 69490

BERTHIER MASKINONGE 1 273 False LPC 10 BQ 8 CPC 2 NDP 0 Other 0 20 BQ 56354
BERTHIER MASKINONGE 3 273 False NDP 124 BQ 76 LPC 38 CPC 19 Other 0 257 BQ 56354
BERTHIER MASKINONGE 215 273 False BQ 13673 NDP 12734 LPC 5060 CPC 3581 Other 0 35048 BQ 56354
BERTHIER MASKINONGE 221 273 False BQ 14315 NDP 13946 LPC 5440 CPC 3972 Other 0 37673 BQ 56354
BERTHIER MASKINONGE 248 273 False BQ 17864 NDP 17069 LPC 6642 CPC 4896 Other 0 46471 BQ 56354
BERTHIER MASKINONGE 253 273 False BQ 18413 NDP 17424 LPC 6836 CPC 5028 Other 0 47701 BQ 56354

BONAVISTA BURIN TRINITY 90 260 False LPC 3790 CPC 3058 NDP 842 GPC 258 Other 0 7948 LPC 32179
BROME MISSISQUOI 1 266 False BQ 98 LPC 78 CPC 53 GPC 20 Other 0 249 LPC 61441
BROME MISSISQUOI 18 266 False BQ 1034 LPC 948 CPC 458 NDP 225 Other 0 2665 LPC 61441
BROME MISSISQUOI 125 266 False LPC 7640 BQ 7271 CPC 2788 NDP 1842 Other 0 19541 LPC 61441
BROME MISSISQUOI 202 266 False LPC 15444 BQ 13813 CPC 4944 NDP 3270 Other 0 37471 LPC 61441

BURNABY SUD 73 192 False NDP 4536 CPC 3826 LPC 2993 GPC 714 Other 0 12069 NDP 45006
BURNABY SUD 75 192 False NDP 4627 CPC 3900 LPC 3047 GPC 730 Other 0 12304 NDP 45006

CAPE BRETON CANSO 2 216 False CPC 120 LPC 117 NDP 67 GPC 21 Other 0 325 LPC 42940
CAPE BRETON CANSO 90 216 False LPC 5961 CPC 5522 NDP 2307 GPC 1278 Other 0 15068 LPC 42940

CARDIGAN 6 90 False LPC 1307 CPC 796 GPC 359 NDP 139 Other 0 2601 LPC 22167
CARDIGAN 12 90 False LPC 1687 CPC 1021 GPC 453 NDP 185 Other 0 3346 LPC 22167

CHARLESBOURG HAUTE
SAINT CHARLES 20 229 False CPC 1053 BQ 735 LPC 557 NDP 252 Other 0 2597 CPC 59096
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CHARLESBOURG HAUTE
SAINT CHARLES 40 229 False CPC 2324 BQ 1541 LPC 1287 NDP 542 Other 0 5694 CPC 59096

CHARLOTTETOWN 1 77 False LPC 38 CPC 31 GPC 11 NDP 3 Other 0 83 LPC 19910
CHATEAUGUAY LACOLLE 12 220 False LPC 663 BQ 467 CPC 184 NDP 54 Other 0 1368 LPC 52402
CHATEAUGUAY LACOLLE 201 220 False LPC 17860 BQ 16900 CPC 5217 NDP 3473 Other 0 43450 LPC 52402
CHATEAUGUAY LACOLLE 210 220 False LPC 19262 BQ 18643 CPC 5638 NDP 3764 Other 0 47307 LPC 52402

COAST OF BAYS CENTRAL
NOTRE DAME 40 231 False LPC 1903 CPC 1222 NDP 307 GPC 114 Other 0 3546 LPC 34182

COMPTON STANSTEAD 170 269 False LPC 11404 BQ 9539 CPC 4449 NDP 3035 Other 0 28427 LPC 58237
COMPTON STANSTEAD 215 269 False LPC 15510 BQ 13331 CPC 6169 NDP 4016 Other 0 39026 LPC 58237

CUMBERLAND COLCHESTER 1 221 False CPC 43 LPC 27 NDP 13 GPC 0 Other 0 83 LPC 45450
CUMBERLAND COLCHESTER 102 220 False LPC 5728 CPC 5547 GPC 2041 NDP 1879 Other 0 15195 LPC 45450

DARTMOUTH COLE
HARBOUR 1 198 False NDP 71 LPC 69 CPC 28 GPC 23 Other 0 191 LPC 53499

DRUMMOND 2 241 False BQ 185 CPC 70 LPC 64 NDP 54 Other 0 373 BQ 54824
DRUMMOND 115 241 False BQ 10074 LPC 3970 CPC 3563 NDP 3496 Other 0 21103 BQ 54824

EGMONT 1 90 False CPC 41 LPC 30 GPC 18 NDP 6 Other 0 95 LPC 20178
FREDERICTON 10 158 False CPC 523 GPC 511 LPC 451 NDP 73 Other 0 1558 GPC 49409
FREDERICTON 15 158 False GPC 806 CPC 719 LPC 677 NDP 120 Other 0 2322 GPC 49409
FREDERICTON 52 158 False GPC 3870 CPC 3290 LPC 2961 NDP 714 Other 0 10835 GPC 49409
FREDERICTON 133 158 False GPC 11665 CPC 10265 LPC 9340 NDP 2087 Other 0 33357 GPC 49409
FUNDY ROYAL 2 198 False CPC 66 LPC 40 GPC 20 Other 3 Other 0 129 CPC 48646
FUNDY ROYAL 25 198 False CPC 1723 LPC 1015 GPC 591 NDP 374 Other 0 3703 CPC 48646

GASPESIE LES ILES DE LA
MADELEINE 2 214 False BQ 122 LPC 108 CPC 23 NDP 10 Other 0 263 LPC 38380

GASPESIE LES ILES DE LA
MADELEINE 10 214 False BQ 871 LPC 869 CPC 218 NDP 59 Other 0 2017 LPC 38380

GASPESIE LES ILES DE LA
MADELEINE 25 214 False BQ 1899 LPC 1636 CPC 383 NDP 123 Other 0 4041 LPC 38380

GASPESIE LES ILES DE LA
MADELEINE 140 214 False BQ 9173 LPC 9134 CPC 1753 NDP 890 Other 0 20950 LPC 38380

GASPESIE LES ILES DE LA
MADELEINE 189 214 False LPC 13719 BQ 13371 CPC 2643 NDP 1398 Other 0 31131 LPC 38380

GASPESIE LES ILES DE LA
MADELEINE 207 214 False LPC 14595 BQ 14503 CPC 2780 NDP 1504 Other 0 33382 LPC 38380

GASPESIE LES ILES DE LA
MADELEINE 212 214 False LPC 16093 BQ 15464 CPC 2993 NDP 1640 Other 0 36190 LPC 38380

HALIFAX OUEST 30 225 False LPC 2190 NDP 897 CPC 851 GPC 567 Other 0 4505 LPC 54357
HOCHELAGA 35 219 False LPC 2235 BQ 1865 NDP 1137 CPC 318 Other 0 5555 LPC 53037
HOCHELAGA 70 219 False LPC 5003 BQ 4224 NDP 2932 CPC 660 Other 0 12819 LPC 53037
HOCHELAGA 140 219 False LPC 9850 BQ 8717 NDP 5933 CPC 1305 Other 0 25805 LPC 53037

HONORE MERCIER 1 209 False LPC 56 BQ 26 CPC 14 NDP 6 Other 0 102 LPC 50363
HONORE MERCIER 25 209 False LPC 3136 BQ 1335 CPC 481 NDP 408 Other 0 5360 LPC 50363

JOLIETTE 1 271 False BQ 264 LPC 72 CPC 38 NDP 24 Other 0 398 BQ 57699
JONQUIERE 1 210 False BQ 108 CPC 94 NDP 54 LPC 47 Other 0 303 BQ 49367
JONQUIERE 2 210 False BQ 216 CPC 177 NDP 105 LPC 94 Other 0 592 BQ 49367
JONQUIERE 15 210 False BQ 1077 NDP 620 CPC 614 LPC 568 Other 0 2879 BQ 49367
JONQUIERE 55 210 False BQ 4693 NDP 3150 CPC 2613 LPC 2239 Other 0 12695 BQ 49367

LA POINTE DE L’ILE 10 243 False BQ 1025 LPC 596 NDP 210 CPC 147 Other 0 1978 BQ 55534
LA PRAIRIE 119 204 False BQ 15166 LPC 12731 CPC 3010 NDP 2872 Other 0 33779 BQ 61553
LABRADOR 25 90 False LPC 896 CPC 474 NDP 330 GPC 30 Other 0 1730 LPC 11419

LAC SAINT JEAN 1 267 False BQ 72 CPC 20 LPC 17 NDP 4 Other 0 113 BQ 54227
LAC SAINT JEAN 60 267 False BQ 4543 LPC 2355 CPC 2325 NDP 546 Other 0 9769 BQ 54227
LAC SAINT JEAN 80 267 False BQ 6212 CPC 3234 LPC 3117 NDP 717 Other 0 13280 BQ 54227

LASALLE EMARD VERDUN 95 203 False LPC 10547 BQ 5805 NDP 3521 CPC 1941 Other 0 21814 LPC 52391
LAURENTIDES LABELLE 5 284 False BQ 208 LPC 198 CPC 49 NDP 22 Other 0 477 BQ 65406
LAURIER SAINTE MARIE 2 174 False BQ 108 LPC 95 CPC 13 NDP 0 Other 0 216 LPC 53409
LAURIER SAINTE MARIE 9 174 False LPC 641 BQ 550 NDP 178 CPC 51 Other 0 1420 LPC 53409
LAURIER SAINTE MARIE 19 174 False LPC 1687 BQ 979 NDP 727 GPC 156 Other 0 3549 LPC 53409
LAURIER SAINTE MARIE 30 174 False LPC 2829 BQ 1599 NDP 1549 GPC 335 Other 0 6312 LPC 53409

LONG RANGE MOUNTAINS 35 250 False LPC 1543 CPC 1025 NDP 494 GPC 115 Other 0 3177 LPC 38426
LONGUEUIL CHARLES

LEMOYNE 20 230 False BQ 1193 LPC 1142 NDP 291 CPC 208 Other 0 2834 LPC 51544

LONGUEUIL CHARLES
LEMOYNE 196 230 False LPC 15988 BQ 15053 NDP 4333 CPC 2986 Other 0 38360 LPC 51544

LONGUEUIL SAINT HUBERT 1 226 False LPC 18 BQ 12 GPC 3 NDP 1 Other 0 34 BQ 59844
LOUIS HEBERT 1 225 False LPC 42 CPC 15 BQ 6 GPC 2 Other 0 65 LPC 62060
LOUIS HEBERT 15 225 False LPC 851 BQ 422 CPC 276 NDP 115 Other 0 1664 LPC 62060

LOUIS SAINT LAURENT 5 255 False CPC 224 BQ 140 LPC 125 NDP 19 Other 0 508 CPC 65561
LOUIS SAINT LAURENT 24 255 False CPC 1557 BQ 871 LPC 811 NDP 288 Other 0 3527 CPC 65561
LOUIS SAINT LAURENT 40 255 False CPC 2895 BQ 1582 LPC 1561 NDP 530 Other 0 6568 CPC 65561

MARKHAM STOUFFVILLE 20 238 False LPC 1441 CPC 1326 Other 906 NDP 222 Other 0 3895 LPC 64388
MARKHAM STOUFFVILLE 40 238 False LPC 3388 CPC 2952 Other 2164 NDP 516 Other 0 9020 LPC 64388
MARKHAM STOUFFVILLE 150 238 False LPC 15374 CPC 12358 Other 9079 NDP 2468 Other 0 39279 LPC 64388
MIRAMICHI GRAND LAKE 1 163 False CPC 22 LPC 19 NDP 7 GPC 4 Other 0 52 LPC 34598
MIRAMICHI GRAND LAKE 16 163 False CPC 1021 LPC 711 GPC 233 NDP 189 Other 0 2154 LPC 34598
MIRAMICHI GRAND LAKE 65 163 False CPC 3677 LPC 3641 GPC 1123 NDP 754 Other 0 9195 LPC 34598

MISSION MATSQUI FRASER
CANYON 1 179 False CPC 51 NDP 28 GPC 27 LPC 25 Other 0 131 CPC 46066

MONCTON RIVERVIEW
DIEPPE 5 191 False LPC 630 GPC 326 CPC 292 NDP 152 Other 0 1400 LPC 51828

MONCTON RIVERVIEW
DIEPPE 25 191 False LPC 1972 CPC 948 GPC 838 NDP 517 Other 0 4275 LPC 51828

MONCTON RIVERVIEW
DIEPPE 50 191 False LPC 3736 CPC 2032 GPC 1607 NDP 1128 Other 0 8503 LPC 51828

MONTARVILLE 10 211 False BQ 620 LPC 525 NDP 114 CPC 105 Other 0 1364 BQ 59228
MONTARVILLE 25 211 False BQ 1805 LPC 1498 NDP 341 CPC 316 Other 0 3960 BQ 59228
MONTARVILLE 105 211 False BQ 8643 LPC 7534 NDP 1911 CPC 1408 Other 0 19496 BQ 59228

NANAIMO LADYSMITH 6 256 False GPC 1004 CPC 783 NDP 683 LPC 319 Other 0 2789 GPC 71864
NANAIMO LADYSMITH 27 256 False GPC 2178 CPC 1877 NDP 1402 LPC 872 Other 0 6329 GPC 71864

NOTRE DAME DE GRACE
WESTMOUNT 70 206 False LPC 6466 NDP 1817 CPC 1497 GPC 1089 Other 0 10869 LPC 50321

NOUVEAU BRUNSWICK SUD
OUEST 35 180 False CPC 2981 LPC 1756 GPC 731 NDP 368 Other 0 5836 CPC 39578

NOVA CENTRE 5 230 False LPC 107 CPC 46 GPC 32 NDP 24 Other 0 209 LPC 44470
NOVA CENTRE 145 230 False LPC 9866 CPC 6360 NDP 2894 GPC 1495 Other 0 20615 LPC 44470
NOVA OUEST 50 229 False CPC 3383 LPC 2668 GPC 840 NDP 763 Other 0 7654 CPC 46798
NOVA OUEST 155 229 False CPC 11774 LPC 10457 GPC 3507 NDP 2989 Other 0 28727 CPC 46798

OTTAWA CENTRE 70 250 False LPC 7127 NDP 4604 CPC 1991 GPC 1112 Other 0 14834 LPC 78902
PAPINEAU 1 197 False LPC 132 NDP 20 BQ 14 CPC 12 Other 0 178 LPC 50781
PAPINEAU 22 197 False LPC 2017 NDP 775 BQ 544 GPC 355 Other 0 3691 LPC 50781

PIERRE BOUCHER LES
PATRIOTES VERCHERES 1 227 False LPC 21 BQ 16 GPC 2 PPC 2 Other 0 41 BQ 60783

QUEBEC 10 227 False LPC 394 BQ 186 CPC 86 NDP 13 Other 0 679 LPC 54198
QUEBEC 160 227 False LPC 9492 BQ 8723 CPC 4080 NDP 3350 Other 0 25645 LPC 54198
QUEBEC 216 227 False LPC 14842 BQ 14394 CPC 6867 NDP 5380 Other 0 41483 LPC 54198
QUEBEC 224 227 False LPC 17014 BQ 16867 CPC 7869 NDP 5897 Other 0 47647 LPC 54198

REGINA QU’APPELLE 1 167 False CPC 91 LPC 11 NDP 10 GPC 1 Other 0 113 CPC 38755
REGINA QU’APPELLE 19 167 False CPC 1364 NDP 496 LPC 408 GPC 84 Other 0 2352 CPC 38755

REGINA WASCANA 11 141 False CPC 829 LPC 638 NDP 235 GPC 56 Other 0 1758 CPC 45355
REGINA WASCANA 98 141 False CPC 10928 LPC 7332 NDP 3016 GPC 664 Other 0 21940 CPC 45355

RICHMOND ARTHABASKA 1 270 False LPC 74 CPC 42 BQ 31 PPC 5 Other 0 152 CPC 58638
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Constituency Boxes Counted Total Boxes RDI Elected First First Count Second Second Count Third Third Count Fourth Fourth Count Fifth Fifth Count Total Votes End Winner End Total Votes

RICHMOND ARTHABASKA 5 270 False CPC 266 BQ 194 LPC 181 GPC 48 Other 0 689 CPC 58638
RICHMOND ARTHABASKA 25 270 False CPC 1433 BQ 913 LPC 727 GPC 192 Other 0 3265 CPC 58638
RICHMOND ARTHABASKA 45 270 False CPC 2979 BQ 1850 LPC 1152 GPC 369 Other 0 6350 CPC 58638

RIMOUSKI NEIGETTE
TEMISCOUATA LES BASQUES 1 220 False LPC 33 BQ 13 CPC 9 NDP 4 Other 0 59 BQ 45767

RIMOUSKI NEIGETTE
TEMISCOUATA LES BASQUES 145 220 False BQ 10266 NDP 7719 LPC 5853 CPC 2123 Other 0 25961 BQ 45767

RIVIERE DES MILLE ILES 150 227 False BQ 11570 LPC 10360 NDP 2558 CPC 2278 Other 0 26766 BQ 58184
RIVIERE DU NORD 30 272 False BQ 2021 LPC 1003 CPC 453 NDP 332 Other 0 3809 BQ 60101
RIVIERE DU NORD 90 272 False BQ 7177 LPC 3087 CPC 1634 NDP 1109 Other 0 13007 BQ 60101

ROSEMONT LA PETITE
PATRIE 1 223 False LPC 30 BQ 5 NDP 4 Other 2 Other 0 41 NDP 60206

ROSEMONT LA PETITE
PATRIE 11 223 False NDP 1192 LPC 613 BQ 589 GPC 168 Other 0 2562 NDP 60206

ROSEMONT LA PETITE
PATRIE 75 223 False NDP 7697 LPC 4425 BQ 4291 GPC 1088 Other 0 17501 NDP 60206

SAANICH GULF ISLANDS 2 238 False GPC 88 LPC 58 CPC 54 NDP 18 Other 0 218 GPC 68150
SAANICH GULF ISLANDS 35 238 False GPC 2844 CPC 1245 LPC 1080 NDP 701 Other 0 5870 GPC 68150

SAINT HYACINTHE BAGOT 1 247 False BQ 118 LPC 50 CPC 45 NDP 43 Other 0 256 BQ 55914
SAINT HYACINTHE BAGOT 55 247 False BQ 4607 LPC 2363 NDP 1995 CPC 1708 Other 0 10673 BQ 55914

SAINT JEAN 80 256 False BQ 12864 LPC 9097 CPC 3136 NDP 1952 Other 0 27049 BQ 61875
SAINT JOHN ROTHESAY 3 170 False LPC 116 CPC 79 GPC 19 NDP 18 Other 0 232 LPC 41253

SAINT MAURICE CHAMPLAIN 5 281 False LPC 238 BQ 144 CPC 55 PPC 14 Other 0 451 LPC 58414
SAINT MAURICE CHAMPLAIN 210 281 False LPC 12930 BQ 11812 CPC 5629 NDP 1910 Other 0 32281 LPC 58414

SALABERRY SUROIT 90 286 False BQ 13573 LPC 8830 CPC 2864 NDP 2126 Other 0 27393 BQ 62903
SHEFFORD 220 271 False BQ 17216 LPC 16266 CPC 5348 NDP 2744 Other 0 41574 BQ 60913
SHEFFORD 268 271 False BQ 22752 LPC 21647 CPC 7245 NDP 3559 Other 0 55203 BQ 60913

SHERBROOKE 95 261 False LPC 4151 NDP 3607 BQ 3227 CPC 1307 Other 0 12292 LPC 59726
SHERBROOKE 145 261 False LPC 6422 NDP 6210 BQ 5349 CPC 2056 Other 0 20037 LPC 59726
SHERBROOKE 204 261 False NDP 10072 LPC 10014 BQ 8923 CPC 3462 Other 0 32471 LPC 59726
SHERBROOKE 220 261 False LPC 11291 NDP 11105 BQ 9823 CPC 3830 Other 0 36049 LPC 59726
SHERBROOKE 255 261 False LPC 15845 NDP 15338 BQ 14007 CPC 5689 Other 0 50879 LPC 59726

SOUTH SHORE ST.
MARGARETS 5 260 False CPC 170 LPC 153 NDP 52 GPC 25 Other 0 400 LPC 52518

SOUTH SHORE ST.
MARGARETS 100 260 False LPC 7974 CPC 5458 NDP 3081 GPC 2156 Other 0 18669 LPC 52518

ST. JOHN’S EST 1 182 False NDP 50 CPC 41 LPC 29 GPC 1 Other 0 121 NDP 45072
ST. JOHN’S EST 15 182 False NDP 1145 LPC 867 CPC 536 GPC 42 Other 0 2590 NDP 45072
ST. JOHN’S EST 50 182 False NDP 4454 LPC 3148 CPC 1757 GPC 157 Other 0 9516 NDP 45072

ST. JOHN’S SUD MOUNT
PEARL 29 185 False LPC 2567 NDP 1650 CPC 786 GPC 90 Other 0 5093 LPC 40666

ST. JOHN’S SUD MOUNT
PEARL 30 185 False LPC 2816 NDP 1743 CPC 895 GPC 96 Other 0 5550 LPC 40666

SYDNEY VICTORIA 130 196 False CPC 7193 LPC 7048 NDP 5053 Other 3962 Other 0 23256 LPC 40565
TOBIQUE MACTAQUAC 1 184 False CPC 17 LPC 10 GPC 4 NDP 1 Other 0 32 CPC 38201
TOBIQUE MACTAQUAC 30 184 False CPC 2273 LPC 819 GPC 460 NDP 261 Other 0 3813 CPC 38201

TORONTO CENTRE 95 257 False LPC 7748 NDP 3261 CPC 1665 GPC 959 Other 0 13633 LPC 54512
TROIS RIVIERES 23 260 False BQ 777 LPC 710 CPC 687 NDP 389 Other 0 2563 BQ 60538
TROIS RIVIERES 125 260 False BQ 5083 LPC 4980 CPC 4624 NDP 2991 Other 0 17678 BQ 60538
TROIS RIVIERES 220 260 False BQ 12871 LPC 12011 CPC 11554 NDP 7536 Other 0 43972 BQ 60538

UNIVERSITY ROSEDALE 27 207 False LPC 2534 CPC 925 NDP 856 GPC 357 Other 0 4672 LPC 57391
VANCOUVER GRANVILLE 8 205 False LPC 189 Other 116 NDP 98 CPC 85 Other 0 488 Ind 53032
VANCOUVER GRANVILLE 50 205 False Other 1959 CPC 1942 LPC 1836 NDP 1086 Other 0 6823 Ind 53032
VANCOUVER GRANVILLE 77 205 False Other 3300 CPC 3149 LPC 3025 NDP 1675 Other 0 11149 Ind 53032
VANCOUVER GRANVILLE 175 205 False Other 9749 LPC 8361 CPC 7100 NDP 4646 Other 0 29856 Ind 53032

WINNIPEG CENTRE 85 175 False GPC 8606 NDP 4976 LPC 4474 CPC 2435 Other 0 20491 NDP 31724
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